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Parton showers vs. SCET

Both parton showers and SCET claim to be 
correct limit of QCD in soft/collinear limit
Both resum large logarithmic terms
There are many obvious similarities
Many things seem different

What is exact relationship?
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Similarities

Much of this discussed in earlier work with Matt

SCET at leading order reproduces AP splitting functions

Strongly ordered limit μ1 « μ2 « ... « μn: interference 
effects in SCET cancel 

Product of splitting functions

Double logarithmic dependence present in both SCET 
and Parton Showers
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Differences

Parton shower SCET

Has 2 scales 
(tstart, tend)

Knows about 3 scales 
(μH, μJ, μS)

Only uses collinear limit Knows about soft 
function

Simple products of AP 
splitting & Sudakov

Needs convolutions 
between functions

Point of this talk to reconcile the two approaches
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Why do we care?

Corrections to parton shower 

In SCET NLL and power corrections tractable

Should give insight how to implement in parton shower

Match parton shower with fixed order calcs

Short distance physics included in SCET by matching

Should tell how to do do same for parton shower

Pure curiosity how both describe same limit of QCD
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Outline

Explain how parton shower works

Constructing physical observables

The SCET result and potential conflicts

Absence of convolutions

The effect of soft running in SCET

Comparison with previous work

Some preliminary results

Conclusions
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How a parton shower 
works
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The parton shower
Consider at most one splitting

Need 3 variables to describe single splitting (2+φ)

Two non-trivial variables usually chosen as 

t: evolution variable

z: splitting variable

Need to know where shower starts and ends (tstart, tend)

Pbr(t,z) Pbr(t,z) Pnb(tstart,tend)

How are the probabilities calculated?
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The probabilities
To preserve 
probability, 

need

∫dt ∫dz Pbr(t,z) + Pnb(tstart,tend) = 1
tend

tstart

∫dz Pbr(t,z) = d/dt Pnb(tstart,t)
or

To LO in PT want Pbr(t,z) = AP(t,z) + O(αs)

Solution given by
Pbr(t,z) = AP(t,z) Δ(tstart,t)

Pnb(tstart,tend) = Δ(tstart,tend)

 Δ(tstart,tend) = exp{-∫dt∫dz AP(t,z)}
tstart

tend
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The probabilities

What are the correct limits of integration on z?

This depends on 
the parton shower

Pythia6: t = p2

Pythia8: t = pT2

Herwig:  t = E2(1-cosΘ)

Want parton shower to 
cover all phase space

zmin = zmin(t)
zmax = zmax(t)

Best understood by considering an example

What is the variable t?AP(t,z) = 1 1+z2

1-zt
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An example: Pythia6
Phase space limits for first emission

t

t

t

z

t
s+t s+ts-t s
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AP splitting has correct singularity if t→0, but 
half the singularity if (t→0,z→1)
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An example: Pythia6
In reality, there are two possible splittings 

(quark and antiquark)
Full singularities
reproduced, since 

double singularities 
is half in each 

casez
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Constructing physical 
observables
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The exclusive 2-jet cross-section

1. Calculate the thrust 
axis of an event

2.Calculate the 
invariant mass in 
both hemispheres

3.Keep all events 
with mL2, mR2 < tcut

tcut

tcut
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Resulting cross section σ2excl(tcut)
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The exclusive 2-jet cross-section
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The exclusive 2-jet cross-section
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1. Running shower from tstart = s to tend = tcut

2.Keep all unbranced events

σ2excl(tcut) = B2 Δ2(s,tcut) + ...
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More general observables

tend

tend

1. Run shower to 
smallest required 
value of t

2.Sum over all 
branched events 
outside region  

3.Add to unbranched 
events
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Any IR safe observable can be implemented
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The SCET result
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The issues

required resolution variable is given in Sec. 2.) Running a parton shower (with an evolution
variable which agrees with the choice of resolution variable) on the n-parton tree-level matrix
element Bn yields the result

dσn(tcut) = Bn∆n(Q2, tcut) , (1.1)

where Q is the hard scale of the collision. The Sudakov factor ∆n in the parton shower is
defined as the no-branching probability, and is given by the exponential of the integral over
the splitting functions. With appropriate integration limits in the exponent, ∆n resums the
correct leading double logarithms of tcut/Q2 in dσn(tcut).

The same cross section is given in SCET schematically as

dσn(tcut) = Bn Hn(µ)×
[ n∏

i=1

Ji(µ)
]
⊗ Sn(µ)

= Bn Hn(µH)UH(µH , µ)×
[ n∏

i=1

Ji(µJ)⊗ UJ(µJ , µ)
]
⊗

[
Sn(µS)⊗ US(µS , µ)

]
,

(1.2)

where Bn denotes again the Born cross section, and ⊗ denotes the convolution of appropriate
kinematic variables. The hard, jet, and soft functions Hn, Ji, Sn encode the physics at the
hard, jet, and soft scales µH # Q, µJ #

√
tcut, µS # tcut/Q. The logarithms ln2(tcut/Q2)

in the cross section are resummed by the renormalization group evolution of each function
from its natural scale µH,J,S to the common (arbitrary) scale µ using its own evolution kernel
UH,J,S . Here, each evolution kernel contains a different Sudakov exponential.

Comparing Eqs. (1.1) and (1.2) one notices several tensions. First, the parton shower
only has a single Sudakov exponential (∆n), while the SCET result has three different types
of evolution kernels (UH , UJ , US). Second, the parton shower result seems to only depend on
the hard and jet scales, µH # Q and µ2

J # tcut, but not on the soft scale µS # tcut/Q. Finally,
the different functions and evolution kernels in the SCET result are coupled by convolutions,
which are absent in the parton shower result.

The main goal of this paper is to show how these apparent tensions are reconciled. Ob-
taining a precise connection between these two seemingly disparate descriptions has important
implications. It allows us to gain insight into the perturbative range where the parton shower
is valid. Furthermore, it opens the possibility to use results from SCET to systematically
improve the parton shower formulation. There are three main insights that will be crucial
to achieve this goal. First, restricting Eq. (1.2) to LL (or even NLL) Hn, Ji, and Sn are
only required at LO, where their convolutions turn into a simple product that reproduces
Bn. Second, as is well known, at LL (and NLL) the convolutions in the evolution kernels
reduce to simple products of Sudakov factors. Third, because of to the correlation between
the scales, µ2

J # µHµS , the product of the hard, jet, and soft Sudakov factors reproduces the
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Running of the 
hard function 
= Sudakov?

What happens to 
running of soft 

and jet function?

Where do the convolutions go in the parton shower?
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The SCET expression

• Define what LL, NLL, etc. means (i.e. in the exponent, so explain that we can work to
tree-level in the matching coefficients. (TODO) TODO: Do we

need this, given
that everybody
agrees with the
LL definition?

3.1 e+e− → 2 Jets

For e+e− → 2 jets the theoretically simplest jet algorithm is the hemisphere jet algorithm.
In this algorithm one uses the thrust axis to define two hemispheres. All particles in each
hemisphere are assigned to a single jet, with the jet direction aligned with the thrust axis.
This yields two back-to-back jets. For the exclusive 2-jet cross section, σ2(tcut), we require
the invariant mass of each jet, i.e. the total invariant mass in each hemisphere, to be less
than tcut.

With this definition, at NLO in perturbation theory we have (abbreviating c = tcut/Q2)

σNLO
2 (tcut) = σ0

{
1− αs(µ)CF

4π

[
4 ln2 c

1− c
+ 6(1− 2c) ln

c

1− 2c
+ 2− 3c(4 + 3c)

+ 8Li2
( c

1− c

)
− 2π2

3

]}

= σ0

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.1)

where σ0 is the total Born cross section for a single quark flavor

σ0 = Nc Q2
q

4πα2
em

3Q2
. (3.2)

Setting c = 1/3 in the first line of Eq. (3.1) correctly reproduces the total NLO cross section,
σNLO

2 = σ0[1 + 3αs(µ)CF /(4π)]. In the second line we expanded in the limit tcut # Q2.
The angular dependence in the full NLO cross section is quite complicated, but in the

limit tcut # Q2 it simplies to

dσNLO
2

dΩ
(tcut) =

dσ0

dΩ

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.3)

with the Born cross section

dσ0

dΩ
= Nc Q2

q
α2

em

4Q2
(1 + cos2 θ) . (3.4)

For simplicity we have ignored the Z-boson contribution in the Born cross sections, Eqs. (3.2)
and (3.4), which can be easily included.

In SCET, the cross section at leading order in tcut/Q2 and all orders in perturbation
theory is factorized as [?]

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
H2(Q, Q, µ)

∫
dk+

1 dk+
2 J̃q(tcut −Qk+

1 , µ)J̃q(tcut −Qk+
2 , µ)S2(k+

1 , k+
2 , µ) ,

(3.5)
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The well known factorization formula is

where H2(Q, Q, µ) is the hard function, S2(k+
1 , k+

2 ) the dijet hemisphere soft function, with k+
i

measuring the soft (plus) momenta in each hemisphere, and J̃q is the integrated jet function

J̃q(t) =
∫ t

dt′Jq(t′, µ) , (3.6)

where Jq(t, µ) is the standard jet function. We have used that for two jet production in the
center of mass frame the label momenta of the two jets are both equal to Q. The tree-level
expressions for the hard, jet and soft functions are

H2(Q, Q, µ) = 1+O(αs) , J̃q(t) = θ(t)+O(αs) , S2(k+
1 , k+

2 ) = δ(k+
1 )δ(k+

2 )+O(αs) , (3.7)

so Eq. (3.5) trivially reproduces the tree-level term in Eq. (3.3).
To NLO, the hard, jet and soft functions are given by

H(Q, Q, µ) = 1 +
αs(µ)CF

2π

(
− log2 Q2

µ2
+ 3 log

Q2

µ2
− 8 +

7π2

6

)
(3.8)

J̃q(t, µ) = θ(t) +
αs(µ)CF

2π
θ(t)

[
7
2
− π2

2
− 3

2
log

t

µ2
+ log2 t

µ2

]

S2(k+
1 , k+

2 , µ) = δ(k+
1 )δ(k+

2 ) +
αs(µ)CF

2π

[
π2

6
δ(k+

1 )δ(k+
2 )

−4δ(k+
1 )

1
µ

(
θ(k+

2 ) log(k+
2 /µ)

k+
2 /µ

)

+

− 4δ(k+
2 )

1
µ

(
θ(k+

1 ) log(k+
1 /µ)

k+
1 /µ

)

+

]

By including the fixedO(αs) corrections for H2, J̃q, and S2, one precisely reproduces Eq. (3.3).
As can be seen from the explicit expressions, the hard, jet and soft functions each contain

logarithmic dependence on the renormalization scale µ, and this dependence cancels only once
they are combined into the observable cross section. However, it can also clearly be seen that
for each of the three functions the large logarithmic terms can be removed by an appropriate
choice of the renormalization scale. In particular, for

µ2 = µ2
h = Q2 (3.9)

all logarithms vanish from the hard function. For the jet and the soft function the exact
choice of scales that make all logarithms disappear depend on the integration variable, but
for

µ2 = µ2
j ∼ tcut and µ2 = µ2

s ∼ t2cut/Q2 , (3.10)

all large logarithmic corrections vanish from the jet and soft functions, respectively. Thus, if
we are only interested in LL accuracy, we can set the hard, jet and soft functions evaluated
at these special scales to their tree level values given in (3.25).

Of course, it is inconsistent to evaluate the three functions in the SCET result at different
scales, and one therefore has to use RG evolution to obtain their result at an arbitrary scale
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We are using the integrated jet function

• Define what LL, NLL, etc. means (i.e. in the exponent, so explain that we can work to
tree-level in the matching coefficients. (TODO) TODO: Do we

need this, given
that everybody
agrees with the
LL definition?
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The Born cross section iski+∼ tcut/Q
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dσNLO
2

dΩ
(tcut) =
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tcut
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3
+O
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)]}
, (3.3)

with the Born cross section

dσ0
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= Nc Q2

q
α2

em

4Q2
(1 + cos2 θ) . (3.4)

For simplicity we have ignored the Z-boson contribution in the Born cross sections, Eqs. (3.2)
and (3.4), which can be easily included.

In SCET, the cross section at leading order in tcut/Q2 and all orders in perturbation
theory is factorized as [?]
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(tcut) =

dσ0
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H2(Q, Q, µ)

∫
dk+

1 dk+
2 J̃q(tcut −Qk+

1 , µ)J̃q(tcut −Qk+
2 , µ)S2(k+

1 , k+
2 , µ) ,

(3.5)
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The well known factorization formula is

The SCET expression

Find scales μH, μJ, μS, where no large logs in H, J, S

Use RG to evolve each term to common scale μ

To LL can use tree level expression for H(μH) , J(μJ), 
S(μS) 

Go through each of these steps...

Summing large logarithms
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where H2(Q, Q, µ) is the hard function, S2(k+
1 , k+

2 ) the dijet hemisphere soft function, with k+
i

measuring the soft (plus) momenta in each hemisphere, and J̃q is the integrated jet function
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∫ t

dt′Jq(t′, µ) , (3.6)
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center of mass frame the label momenta of the two jets are both equal to Q. The tree-level
expressions for the hard, jet and soft functions are
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1 , k+

2 ) = δ(k+
1 )δ(k+

2 )+O(αs) , (3.7)

so Eq. (3.5) trivially reproduces the tree-level term in Eq. (3.3).
To NLO, the hard, jet and soft functions are given by

H(Q, Q, µ) = 1 +
αs(µ)CF

2π

(
− log2 Q2

µ2
+ 3 log

Q2

µ2
− 8 +

7π2

6

)
(3.8)

J̃q(t, µ) = θ(t) +
αs(µ)CF

2π
θ(t)

[
7
2
− π2

2
− 3

2
log

t

µ2
+ log2 t

µ2

]

S2(k+
1 , k+

2 , µ) = δ(k+
1 )δ(k+

2 ) +
αs(µ)CF
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[
π2

6
δ(k+

1 )δ(k+
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−4δ(k+
1 )

1
µ

(
θ(k+

2 ) log(k+
2 /µ)

k+
2 /µ

)

+

− 4δ(k+
2 )

1
µ

(
θ(k+

1 ) log(k+
1 /µ)

k+
1 /µ

)

+

]

By including the fixedO(αs) corrections for H2, J̃q, and S2, one precisely reproduces Eq. (3.3).
As can be seen from the explicit expressions, the hard, jet and soft functions each contain

logarithmic dependence on the renormalization scale µ, and this dependence cancels only once
they are combined into the observable cross section. However, it can also clearly be seen that
for each of the three functions the large logarithmic terms can be removed by an appropriate
choice of the renormalization scale. In particular, for

µ2 = µ2
h = Q2 (3.9)

all logarithms vanish from the hard function. For the jet and the soft function the exact
choice of scales that make all logarithms disappear depend on the integration variable, but
for

µ2 = µ2
j ∼ tcut and µ2 = µ2

s ∼ t2cut/Q2 , (3.10)

all large logarithmic corrections vanish from the jet and soft functions, respectively. Thus, if
we are only interested in LL accuracy, we can set the hard, jet and soft functions evaluated
at these special scales to their tree level values given in (3.25).

Of course, it is inconsistent to evaluate the three functions in the SCET result at different
scales, and one therefore has to use RG evolution to obtain their result at an arbitrary scale
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at these special scales to their tree level values given in (3.25).
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The RG equationsµ. The renormalization group equations for the hard, jet and soft function relevant for the
hemisphere jet algorithm are given by

µ
d
dµ

H2(Q, Q, µ) = γH2(Q, µ)Hn({ωi}, µ)

µ
d
dµ

J̃(t, µ) =
∫

dt′γJ(t− t′, µ)J̃(t′, µ)

µ
d
dµ

Sn(k+
1 , k+

2 , µ) =
∫

dt′γS2(k
+
1 , k+

2 , µ)Sn(k+
1 , k+

2 , µ) . (3.11)

The anomalous dimensions have been calculated in full generality in [?], but to LL order as
required for this work they are simply given by

γH2(Q;µ) =
αs(µ)CF

2π

[
−4 ln

µ2

Q2

]

γJ(t;µ) =
αs(µ)CF

2π

[
−4

1
µ2

(
µ2

t

)

+

]

γS2(k
+
1 , k+

2 ;µ) =
αs(µ)CF

2π

[
4
µ

(
µ

k+
1

)

+

δ(k+
2 ) +

4
µ

(
µ

k+
2

)

+

δ(k+
1 )

]
. (3.12)

Using the tree level results (3.25) as the initial condition, the solutions to these RG equations
are given by

H2(Q, Q, µ) = exp [KH2(µ, µh)]

J̃(t, µ) = θ(t) exp [KJ(µ, µj)]

γS2(k
+
1 , k+

2 ;µ) = δ(k+
1 )δ(k+

2 ) exp [KS2(µ, µs)] , (3.13)

where the functions K are given by

KH(µH , µ) = −16CF π

β2
0

rH − 1− rH ln rH

αs(µ)

KJ(µJ , µ) =
16CF π

β2
0

rJ − 1− rJ ln rJ

αs(µ)

KS(µS , µ) = −16CF π

β2
0

rS − 1− rS ln rS

αs(µ)
(3.14)

where

rF ≡
αs(µ)
αs(µF )

≡
1 + αs(Q)β0

4π ln µ2
F

Q2

1 + αs(Q)β0

4π ln µ2

Q2

(3.15)

with Q being an arbitrary reference scale and

β0 = 11− 2
3
nf . (3.16)
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Well known anomalous dimensions at LL
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+
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+
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with Q being an arbitrary reference scale and

β0 = 11− 2
3
nf . (3.16)
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Tree level expressions

where H2(Q, Q, µ) is the hard function, S2(k+
1 , k+

2 ) the dijet hemisphere soft function, with k+
i

measuring the soft (plus) momenta in each hemisphere, and J̃q is the integrated jet function

J̃q(t) =
∫ t

dt′Jq(t′, µ) , (3.6)

where Jq(t, µ) is the standard jet function. We have used that for two jet production in the
center of mass frame the label momenta of the two jets are both equal to Q. The tree-level
expressions for the hard, jet and soft functions are

H2(Q, Q, µ) = 1+O(αs) , J̃q(t) = θ(t)+O(αs) , S2(k+
1 , k+

2 ) = δ(k+
1 )δ(k+

2 )+O(αs) , (3.7)

so Eq. (3.5) trivially reproduces the tree-level term in Eq. (3.3).
To NLO, the hard, jet and soft functions are given by

H(Q, Q, µ) = 1 +
αs(µ)CF

2π

(
! log2 Q2

µ2
+ 3 log

Q2

µ2
! 8 +

7π2

6

)
(3.8)

J̃q(t, µ) = θ(t) +
αs(µ)CF

2π
θ(t)

[
7
2

!
π2

2
!

3
2

log
t

µ2
+ log2 t

µ2

]

S2(k+
1 , k+

2 , µ) = δ(k+
1 )δ(k+

2 ) +
αs(µ)CF

2π

[
π2

6
δ(k+

1 )δ(k+
2 )

! 4δ(k+
1 )

1
µ

(
θ(k+

2 ) log(k+
2 /µ)

k+
2 /µ

)

+

! 4δ(k+
2 )

1
µ

(
θ(k+

1 ) log(k+
1 /µ)

k+
1 /µ

)

+

]

By including the fixedO(αs) corrections for H2, J̃q, and S2, one precisely reproduces Eq. (3.3).
As can be seen from the explicit expressions, the hard, jet and soft functions each contain

logarithmic dependence on the renormalization scale µ, and this dependence cancels only once
they are combined into the observable cross section. However, it can also clearly be seen that
for each of the three functions the large logarithmic terms can be removed by an appropriate
choice of the renormalization scale. In particular, for

µ2 = µ2
h = Q2 (3.9)

all logarithms vanish from the hard function. For the jet and the soft function the exact
choice of scales that make all logarithms disappear depend on the integration variable, but
for

µ2 = µ2
j " tcut and µ2 = µ2

s " t2cut/Q2 , (3.10)

all large logarithmic corrections vanish from the jet and soft functions, respectively. Thus, if
we are only interested in LL accuracy, we can set the hard, jet and soft functions evaluated
at these special scales to their tree level values given in (3.25).

Of course, it is inconsistent to evaluate the three functions in the SCET result at different
scales, and one therefore has to use RG evolution to obtain their result at an arbitrary scale
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Solutions at LL

with functions

µ. The renormalization group equations for the hard, jet and soft function relevant for the
hemisphere jet algorithm are given by

µ
d
dµ

H2(Q, Q, µ) = γH2(Q, µ)H2(Q, Q, µ)

µ
d
dµ

J̃(t, µ) =
∫

dt′γJ(t− t′, µ)J̃(t′, µ)

µ
d
dµ

Sn(k+
1 , k+

2 , µ) =
∫

dk′+
1

∫
dk′+

1 γS2(k
+
1 − k′+

1 , k+
2 − k′+

2 , µ)Sn(k′+
1 , k′+

2 , µ) . (3.11)

The anomalous dimensions have been calculated in full generality in [?], but to LL order as
required for this work they are simply given by

γH2(Q;µ) =
αs(µ)CF

2π

[
−4 ln

µ2

Q2

]

γJ(t;µ) =
αs(µ)CF

2π

[
−4

1
µ2

(
µ2

t

)

+

]

γS2(k
+
1 , k+

2 ;µ) =
αs(µ)CF

2π

[
4
µ

(
µ

k+
1

)

+

δ(k+
2 ) +

4
µ

(
µ

k+
2

)

+

δ(k+
1 )

]
. (3.12)

Using the tree level results (3.25) as the initial condition, the solutions to these RG equations
are given by

H2(Q, Q, µ) = exp [KH2(µH , µ)]

J̃(t, µ) = θ(t) exp [KJ(µJ , µ)]

S2(k+
1 , k+

2 ;µ) = δ(k+
1 )δ(k+

2 ) exp [KS2(µS , µ)] , (3.13)

where the functions K are given by

KF (µH , µ) =
4CF

π

∫ µ

µF

dµ′

µ′ αs(µ′) ln
µF

µ′

KJ(µJ , µ) =
4CF

π

∫ µ

µJ

dµ′

µ′ αs(µ′) ln
µJ

µ′

KS(µS , µ) =
4CF

π

∫ µ

µS

dµ′

µ′ αs(µ′) ln
µS

µ′ (3.14)

where

rF ≡
αs(µ)
αs(µF )

≡
1 + αs(Q)β0

4π ln µ2
F

Q2

1 + αs(Q)β0

4π ln µ2

Q2

(3.15)

with Q being an arbitrary reference scale and

β0 = 11− 2
3
nf . (3.16)
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Putting it together
Choosing the arbitrary renormalization scale as µ = µJ , one obtains for the exclusive cross
section

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
exp [KH(µH , µJ) + KS(µS , µJ)] (3.17)

Note that to this order, the convolutions between the jet and the soft functions have disap-
peared entirely from the result. However, the LL dependence depends still on the evolution
of the soft and the hard function. However, using the fact that

µJ

µH
=

µS

µJ
, (3.18)

we find that to LL accuracy we running of the soft function doubles the logarithms coming
from the hard function

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
exp [2KH(µH , µJ)] . (3.19)

This SCET result can now be compared to the parton shower result, given by

dσPS
2

dΩ
(tcut) =

dσ0

dΩ
∆2(Q2, tcut) . (3.20)

At lowest order the Sudakov factor is simply ∆2 = 1+O(αs), so this also trivially reproduces
the leading term of Eq. (3.3).

3.2 e+e− → n Jets

The extension of our results to more than 2 jets is relatively straightforward. First, one needs
to define the n-jet algorithm we will use carefully. The procedure is as follows: (1) Identify n

light-like directions (2) Group all particles into jets according to the smallest angle with these
light-like directions (3) Calculate the invariant mass of each jet (4) Keep only those events
that have all jet masses below tcut.

The Born level result for the differential cross section is given by

Bn(Φn) =
∑

spins

∑

colors

∑

partons

|MLO
n (p1, . . . , pn)|2 . (3.21)

Given that at leading order each jet consists of only a single massless parton, the differential
n jet cross section can be written in terms of the (massless) n body phase space

dΦn =
1

2Q2

n∏

i=1

d3pi

(2π)3 2Ei
(2π)4δ(q −

∑

i

pi) (3.22)

as
dσLO

n = Bn(Φn) dΦn . (3.23)

SCET allows to write a factorization formula for the general result to higher orders in
perturbation theory, as long as the mass of each jet is much less than its energy, and also
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But still need running of soft and hard function
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Correlation of scales
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perturbation theory, as long as the mass of each jet is much less than its energy, and also
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This gives to leading log (in x-section)

Choosing the arbitrary renormalization scale as µ = µJ , one obtains for the exclusive cross
section

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
exp [KH(µH , µJ) + KS(µS , µJ)] (3.17)

Note that to this order, the convolutions between the jet and the soft functions have disap-
peared entirely from the result. However, the LL dependence depends still on the evolution
of the soft and the hard function. However, using the fact that

µJ

µH
=

µS

µJ
, (3.18)

we find that to LL accuracy we running of the soft function doubles the logarithms coming
from the hard function
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This SCET result can now be compared to the parton shower result, given by
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At lowest order the Sudakov factor is simply ∆2 = 1+O(αs), so this also trivially reproduces
the leading term of Eq. (3.3).

3.2 e+e− → n Jets

The extension of our results to more than 2 jets is relatively straightforward. First, one needs
to define the n-jet algorithm we will use carefully. The procedure is as follows: (1) Identify n

light-like directions (2) Group all particles into jets according to the smallest angle with these
light-like directions (3) Calculate the invariant mass of each jet (4) Keep only those events
that have all jet masses below tcut.

The Born level result for the differential cross section is given by

Bn(Φn) =
∑

spins

∑

colors

∑

partons

|MLO
n (p1, . . . , pn)|2 . (3.21)

Given that at leading order each jet consists of only a single massless parton, the differential
n jet cross section can be written in terms of the (massless) n body phase space

dΦn =
1

2Q2

n∏

i=1

d3pi

(2π)3 2Ei
(2π)4δ(q −

∑

i

pi) (3.22)

as
dσLO

n = Bn(Φn) dΦn . (3.23)

SCET allows to write a factorization formula for the general result to higher orders in
perturbation theory, as long as the mass of each jet is much less than its energy, and also
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Final result is therefore

Soft running and convolutions have disappeared!
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4π
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g
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+ 6 ln

m2
g

Q2
+ 9− 2π2

3
+O

(
m2

g

Q2

)]}
(3)

KF (µF , µ) =
4CF

π

∫ µ

µF

dµ′

µ′ αs(µ′) ln
µF

µ′

= −αsCF

2π
ln2 µ2

µ2
F

+ . . .

(4)

KH(µH , µJ) = −αsCF

2π
ln2 µ2

J

µ2
H

+ . . .

KS(µ2
J/µH , µJ) = −αsCF

2π
ln2 µ2

H

µ2
J

+ . . .

(5)
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Comparison with Parton Shower

Choosing the arbitrary renormalization scale as µ = µJ , one obtains for the exclusive cross
section
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(tcut) =
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dΩ
exp [KH(µH , µJ) + KS(µS , µJ)] (3.17)

Note that to this order, the convolutions between the jet and the soft functions have disap-
peared entirely from the result. However, the LL dependence depends still on the evolution
of the soft and the hard function. However, using the fact that

µJ
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=

µS
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, (3.18)

we find that to LL accuracy we running of the soft function doubles the logarithms coming
from the hard function

dσSCET
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dΩ
(tcut) =

dσ0

dΩ
exp [2KH(µH , µJ)] . (3.19)

This SCET result can now be compared to the parton shower result, given by

dσPS
2

dΩ
(tcut) =

dσ0

dΩ
∆2(Q2, tcut) . (3.20)

At lowest order the Sudakov factor is simply ∆2 = 1+O(αs), so this also trivially reproduces
the leading term of Eq. (3.3).

3.2 e+e− → n Jets

The extension of our results to more than 2 jets is relatively straightforward. First, one needs
to define the n-jet algorithm we will use carefully. The procedure is as follows: (1) Identify n

light-like directions (2) Group all particles into jets according to the smallest angle with these
light-like directions (3) Calculate the invariant mass of each jet (4) Keep only those events
that have all jet masses below tcut.

The Born level result for the differential cross section is given by

Bn(Φn) =
∑

spins

∑

colors

∑

partons

|MLO
n (p1, . . . , pn)|2 . (3.21)

Given that at leading order each jet consists of only a single massless parton, the differential
n jet cross section can be written in terms of the (massless) n body phase space

dΦn =
1

2Q2

n∏

i=1

d3pi

(2π)3 2Ei
(2π)4δ(q −

∑

i

pi) (3.22)

as
dσLO

n = Bn(Φn) dΦn . (3.23)

SCET allows to write a factorization formula for the general result to higher orders in
perturbation theory, as long as the mass of each jet is much less than its energy, and also
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Comparison with previous work

the RG equation2

µ
d

dµ
[Cn(µ)On(µ)] = 0 . (72)

The µ dependence enters the operator On only through its renormalization constant Zn.
The anomalous dimension of an operator is defined as

γn ≡
1

Zn(µ)
µ

d

dµ
Zn(µ) . (73)

This allows us to write the RG equation in its final form

µ
d

dµ
Cn(µ) = γn(µ)Cn(µ) . (74)

This differential equation can be written as an integral equation

Πn(µ2, µ1) ≡
Cn(µ1)

Cn(µ2)
= exp

[

−
∫ µ2

µ1

dµ

µ
γn(µ)

]

. (75)

We call Πn the RG evolution kernel. It determines the change of a Wilson coefficient Cn as
the scale changes. Thus, if we have calculated the Wilson coefficients Cn at one scale, we
can use this kernel to obtain its value at any other scale. The anomalous dimensions will
have the form

γn = −

[

αs(µ)

π
Γ(1)

n +

(

αs(µ)

π

)2

Γ(2)
n + . . .

]

log
µ2

Q2
−

[

αs(µ)

π
B(1)

n +

(

αs(µ)

π

)2

B(2)
n + . . .

]

.(76)

The first term in brackets, is often called the cusp anomalous dimension. It multiplies an
explicit, linear dependence on logµ. This term arises because of the double 1/ε2 poles in the
renormalization constants Zn, which in turn can be traced back to the fact that full QCD
has overlapping soft and collinear divergences. Such a term in the anomalous dimension is
not problematic if no higher powers of logarithms appear, because it can be resumed. And
in fact, it has been shown that at any order in perturbation theory the anomalous dimension
contains at most a linear dependence on such a logarithm [37].

As a practical matter, it is helpful to have an explicit form for the evolution kernel (75).
At leading order in αs

γn(µ) = −
αs(µ)

π
(Γn log

µ2

Q2
+ Bn) (77)

where Γn and Bn do not depend on µ. The integral over µ can then be performed explicitly,
and we find

Πn(Q, µ) = exp

{

8π

β2
0αs(Q)

Γn

(

log
αs(Q)

αs(µ)
+ 1 −

αs(Q)

αs(µ)

)

−
2

β0
Bn log

αs(Q)

αs(µ)

}

(78)

2 Beyond leading order, there may be mixing among operators. In this case the anomalous dimensions

would be matrices, but we stick to the case without mixing for simplicity.
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Running of Wilson 
coefficient

A. Sudakov factors from renormalization group evolution

First, we compare the RG evolution kernels obtained in the effective theory to the Sudakov
factors which arise in traditional parton showers. We will show that to leading log accuracy
the evolution kernels coincide with traditional Sudakov factors. To start, suppose we just
match from QCD to 2-jet operators. Then, according to (44), at µ = Q, Cn,n̄

2 = 1 and all
other Wilson coefficients vanish. For an emission at a scale pT , we need to run C2 down to
µ = pT . Using the 2-jet anomalous dimension we find

C(n,n̄)
2 (µ) = C2(Q)Π2(Q, µ) , (98)

with the RG Kernel given by

Π2(Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
−µ′2

Q2
+

3

2

]}

. (99)

This result can be compared with the expression for the Sudakov factor in traditional
parton showers given in Eq. (7). The precise form of the Sudakov factor depends on the
choice of evolution variables used, and on the precise value of the argument of αs that is used.
Most Sudakov factors use for the scale of αs an approximation to transverse momentum given
by

τ = z(1 − z)t ≈ p2
T . (100)

As an example, we will consider the so-called NLL Sudakov [10, 19, 24], which also uses τ
as the evolution variable. The limits of phase space are

√
τ/Q < z < 1 −

√
τ/Q. Thus the

Sudakov factor becomes

∆NLL
q (τ2, τ1) = exp

{

−
CF

2π

∫ τ2

τ1

dτ ′

τ ′ αs[
√

τ ′]

∫ 1−
√

τ ′

Q

√
τ ′

Q

dz
1 + z2

1 − z

}

. (101)

The z integral can be evaluated analytically. Substituting µ =
√

τ ′ ≈ pT gives

∆NLL
q (Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
µ′2

Q2
+

3

2
+ O

(

µ′

Q

)]}

. (102)

Because the integral is dominated for small values of µ, we can drop the power law µ′/Q
terms, as is done in the literature. Comparing (102) to (99) we see that the O(αs) evolution
kernel reproduces this Sudakov factor exactly.

The 3/2 term in (102) gives rise to subleading logarithms after integrating over µ, hence
the name NLL Sudakov factor. However, there are additional subleading terms which are
not included consistently. For example, changing the reference scale µR at which the renor-
malized αs is defined gives rise to subleading terms which are also NLL. The optimal value of
µR cannot be determined to the order we are working. Moreover, different Sudakov factors,
based on different evolution variables, give a different constant term [10]. In other words,
the Sudakov factor only gives the leading logarithms reliably, and the 3/2 term may be
dropped.

To illustrate this point, we show in Figure 1 the 2-parton evolution kernel (Sudakov
factor) Π2 with various NLL effects included. The light band shows the effect of varying the
3/2 term from 0 to 3. The darker band shows the effect of adding a NLL factor proportional
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match from QCD to 2-jet operators. Then, according to (44), at µ = Q, Cn,n̄

2 = 1 and all
other Wilson coefficients vanish. For an emission at a scale pT , we need to run C2 down to
µ = pT . Using the 2-jet anomalous dimension we find

C(n,n̄)
2 (µ) = C2(Q)Π2(Q, µ) , (98)

with the RG Kernel given by

Π2(Q, µ) = exp
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CF
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+
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]}
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This result can be compared with the expression for the Sudakov factor in traditional
parton showers given in Eq. (7). The precise form of the Sudakov factor depends on the
choice of evolution variables used, and on the precise value of the argument of αs that is used.
Most Sudakov factors use for the scale of αs an approximation to transverse momentum given
by

τ = z(1 − z)t ≈ p2
T . (100)

As an example, we will consider the so-called NLL Sudakov [10, 19, 24], which also uses τ
as the evolution variable. The limits of phase space are

√
τ/Q < z < 1 −

√
τ/Q. Thus the

Sudakov factor becomes

∆NLL
q (τ2, τ1) = exp

{

−
CF

2π

∫ τ2

τ1

dτ ′

τ ′ αs[
√

τ ′]

∫ 1−
√

τ ′

Q

√
τ ′

Q

dz
1 + z2

1 − z

}

. (101)

The z integral can be evaluated analytically. Substituting µ =
√

τ ′ ≈ pT gives

∆NLL
q (Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
µ′2

Q2
+

3

2
+ O

(

µ′

Q

)]}

. (102)

Because the integral is dominated for small values of µ, we can drop the power law µ′/Q
terms, as is done in the literature. Comparing (102) to (99) we see that the O(αs) evolution
kernel reproduces this Sudakov factor exactly.

The 3/2 term in (102) gives rise to subleading logarithms after integrating over µ, hence
the name NLL Sudakov factor. However, there are additional subleading terms which are
not included consistently. For example, changing the reference scale µR at which the renor-
malized αs is defined gives rise to subleading terms which are also NLL. The optimal value of
µR cannot be determined to the order we are working. Moreover, different Sudakov factors,
based on different evolution variables, give a different constant term [10]. In other words,
the Sudakov factor only gives the leading logarithms reliably, and the 3/2 term may be
dropped.

To illustrate this point, we show in Figure 1 the 2-parton evolution kernel (Sudakov
factor) Π2 with various NLL effects included. The light band shows the effect of varying the
3/2 term from 0 to 3. The darker band shows the effect of adding a NLL factor proportional
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kernel and the Sudakov factors are related according to

Π2
n(Q, µ) = ∆nq

q (Q, µ) ∆ng
g (Q, µ) , (106)

where nq (ng) are the number of collinear quark (gluon) fields in the operator On. Thus
SCET reproduces all the classical Sudakov no-branching probabilities at leading log through
the renormalization group flow of an effective theory.

B. Splitting functions from collinear emissions

In this section we will show how the couplings in SCET, when put into cross sections,
reproduce the splitting functions of QCD.

For a 3-parton final state, once µ has run below pT , 2-jet operator can no-longer contribute
and the threshold matching turns O2 into O(2)

3 . If we are not concerned with additional
emissions, the differential cross section for emission will be

dσ

dsdt
=

σ0

64π2

∑

phys pols

∣

∣

∣
C(2)

3 〈O(2)
3 |qq̄g〉

∣

∣

∣

2
(107)

where

σ0 =
4παe

3Q2
CA

∑

Q2
j (108)

We have already seen that |C(2)
3 |2 encodes the Sudakov factor, so now let us look at the

matrix elements. Using the explicit form of O(2)
3 given in Eq. (28), we can perform the sum

explicitly. According to the conventions of Section 4, we find

∣

∣

∣
〈O(2)

3 〉
∣

∣

∣

2
= 8g2

sCF

[

s

t

u2 + Q2

(s + t)2
+

t

s

u2 + Q2

(s + t)2
+

4Q2u2

(t + u)(s + u)(s + t)2

]

(109)

The first term comes from the square of the diagram with the quark emitting, the second
from the square of the diagram with the antiquark emitting, and the third from interference.

Rewriting the amplitude in terms of t and z, and taking the limit where the gluon becomes
collinear with the quark, so pq̄

T → 0 and t → 0, the amplitude approaches

dσ

ds dt
=

σ0

64π2

∣

∣

∣
〈O(2)

3 〉
∣

∣

∣

2

= σ0
αsCF

2π

1

t

1 + z2

1 − z
+ · · · (110)

where the · · · are higher order in pT /Q. So we reproduce the QCD splitting function (6),
as required.

Note that the interference term (the third term in Eq. (109)) does not have an s or t
pole, so it is finite as pT → 0 and represents a pure power correction. Since the interference
is higher order in the SCET expansion, we may simply drop it. Recall that dropping
interference terms is one of the approximations used in the parton shower, and so we see
that it is justified by SCET. However, the interference term should be included following
our conventions for evaluating matrix elements – if we dropped it, we would not reproduce
QCD at the hard scale. Because we match at the matrix element level, it is important to
keep the interference terms in. Note also that at leading order, we do not need to distinguish
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Gave us final result
Comparison with previous work

In notation of this talk:
Δ2(s,tcut) = exp[KH(s,tcut)]

This work gives
Δ(s,tcut) = exp[KH(s,tcut)]

Factor of two from additional soft running

Where does the difference come from?
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Go back to definition of NLL Sudakov factor
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Comparison with previous work

A. Sudakov factors from renormalization group evolution

First, we compare the RG evolution kernels obtained in the effective theory to the Sudakov
factors which arise in traditional parton showers. We will show that to leading log accuracy
the evolution kernels coincide with traditional Sudakov factors. To start, suppose we just
match from QCD to 2-jet operators. Then, according to (44), at µ = Q, Cn,n̄

2 = 1 and all
other Wilson coefficients vanish. For an emission at a scale pT , we need to run C2 down to
µ = pT . Using the 2-jet anomalous dimension we find

C(n,n̄)
2 (µ) = C2(Q)Π2(Q, µ) , (98)

with the RG Kernel given by

Π2(Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
−µ′2

Q2
+

3

2

]}

. (99)

This result can be compared with the expression for the Sudakov factor in traditional
parton showers given in Eq. (7). The precise form of the Sudakov factor depends on the
choice of evolution variables used, and on the precise value of the argument of αs that is used.
Most Sudakov factors use for the scale of αs an approximation to transverse momentum given
by

τ = z(1 − z)t ≈ p2
T . (100)

As an example, we will consider the so-called NLL Sudakov [10, 19, 24], which also uses τ
as the evolution variable. The limits of phase space are

√
τ/Q < z < 1 −

√
τ/Q. Thus the

Sudakov factor becomes

∆NLL
q (τ2, τ1) = exp

{

−
CF

2π

∫ τ2

τ1

dτ ′

τ ′ αs[
√

τ ′]

∫ 1−
√

τ ′

Q

√
τ ′

Q

dz
1 + z2

1 − z

}

. (101)

The z integral can be evaluated analytically. Substituting µ =
√

τ ′ ≈ pT gives

∆NLL
q (Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
µ′2

Q2
+

3

2
+ O

(

µ′

Q

)]}

. (102)

Because the integral is dominated for small values of µ, we can drop the power law µ′/Q
terms, as is done in the literature. Comparing (102) to (99) we see that the O(αs) evolution
kernel reproduces this Sudakov factor exactly.

The 3/2 term in (102) gives rise to subleading logarithms after integrating over µ, hence
the name NLL Sudakov factor. However, there are additional subleading terms which are
not included consistently. For example, changing the reference scale µR at which the renor-
malized αs is defined gives rise to subleading terms which are also NLL. The optimal value of
µR cannot be determined to the order we are working. Moreover, different Sudakov factors,
based on different evolution variables, give a different constant term [10]. In other words,
the Sudakov factor only gives the leading logarithms reliably, and the 3/2 term may be
dropped.

To illustrate this point, we show in Figure 1 the 2-parton evolution kernel (Sudakov
factor) Π2 with various NLL effects included. The light band shows the effect of varying the
3/2 term from 0 to 3. The darker band shows the effect of adding a NLL factor proportional
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Go back to definition of NLL Sudakov factor

A. Sudakov factors from renormalization group evolution

First, we compare the RG evolution kernels obtained in the effective theory to the Sudakov
factors which arise in traditional parton showers. We will show that to leading log accuracy
the evolution kernels coincide with traditional Sudakov factors. To start, suppose we just
match from QCD to 2-jet operators. Then, according to (44), at µ = Q, Cn,n̄

2 = 1 and all
other Wilson coefficients vanish. For an emission at a scale pT , we need to run C2 down to
µ = pT . Using the 2-jet anomalous dimension we find

C(n,n̄)
2 (µ) = C2(Q)Π2(Q, µ) , (98)

with the RG Kernel given by

Π2(Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
−µ′2

Q2
+

3

2

]}

. (99)

This result can be compared with the expression for the Sudakov factor in traditional
parton showers given in Eq. (7). The precise form of the Sudakov factor depends on the
choice of evolution variables used, and on the precise value of the argument of αs that is used.
Most Sudakov factors use for the scale of αs an approximation to transverse momentum given
by

τ = z(1 − z)t ≈ p2
T . (100)

As an example, we will consider the so-called NLL Sudakov [10, 19, 24], which also uses τ
as the evolution variable. The limits of phase space are

√
τ/Q < z < 1 −

√
τ/Q. Thus the

Sudakov factor becomes

∆NLL
q (τ2, τ1) = exp

{

−
CF

2π

∫ τ2

τ1

dτ ′

τ ′ αs[
√

τ ′]

∫ 1−
√

τ ′

Q

√
τ ′

Q

dz
1 + z2

1 − z

}

. (101)

The z integral can be evaluated analytically. Substituting µ =
√

τ ′ ≈ pT gives

∆NLL
q (Q, µ) = exp

{

CF

π

∫ Q

µ

dµ′

µ′ αs(µ
′)

[

log
µ′2

Q2
+

3

2
+ O

(

µ′

Q

)]}

. (102)

Because the integral is dominated for small values of µ, we can drop the power law µ′/Q
terms, as is done in the literature. Comparing (102) to (99) we see that the O(αs) evolution
kernel reproduces this Sudakov factor exactly.

The 3/2 term in (102) gives rise to subleading logarithms after integrating over µ, hence
the name NLL Sudakov factor. However, there are additional subleading terms which are
not included consistently. For example, changing the reference scale µR at which the renor-
malized αs is defined gives rise to subleading terms which are also NLL. The optimal value of
µR cannot be determined to the order we are working. Moreover, different Sudakov factors,
based on different evolution variables, give a different constant term [10]. In other words,
the Sudakov factor only gives the leading logarithms reliably, and the 3/2 term may be
dropped.

To illustrate this point, we show in Figure 1 the 2-parton evolution kernel (Sudakov
factor) Π2 with various NLL effects included. The light band shows the effect of varying the
3/2 term from 0 to 3. The darker band shows the effect of adding a NLL factor proportional
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The evolution variable of Herwig

t = E2(1-cosΘ)
As mentioned before, angular ordering (not pT)

Angular variable can not be resolution variable
k→0

Herwig uses gluon (and quark) mass to regulate IR

NLL Sudakov very similar to Herwig Sudakov

Further recombinations are then defined iteratively.

Note that the different choices of resolution variable and recombination schemes

were developed to make contact with experimental observables. Here, we are inter-
ested in connecting partons to a parton-shower history in a quantitative way. Since

the center-of-mass energy is known in the theoretical calculation, there is no reason
to apply the requirement of invariance under longitudinal boosts, for example.

3.2 Sudakov Form Factors

An important part of the matching procedure described above is the reweighting by

the Sudakov form factors. Here, we review some of the relevant forms of the Sudakov
form factors found in the various Monte Carlo event generators.

3.2.1 HERWIG

The form factors for the coherent branching process used in HERWIG are given by

∆HW

a→bc(t̃) = exp







−
∫ t̃

4t0

dt′

t′

∫ 1−
√

t0
t′

√

t0
t′

dz

2π
αS(z2(1 − z)2t′)P̂ba(z)







, (3.11)

where t′ is the evolution scale (in GeV2), t0 is the infra-red cut-off (in the same units),
t̃ is the starting scale for the shower, and P̂ba are the unregularized DGLAP splitting
functions

Pgg = CA

[

1 − z

z
+

z

1 − z
+ z(1 − z)

]

, (3.12a)

Pqg = TR

[

z2 + (1 − z)2
]

, (3.12b)

Pqq = CF

1 + z2

1 − z
. (3.12c)

The variable z represents the fraction of energy shared by the partons in a 1 → 2

branching. The quantity z2(1 − z)2t′ = 1
2p

2
T represents one-half the square of the

relative transverse momentum of the daughters with respect to the mother’s direction

of motion. For those branchings which are divergent (in the z integral), this is exactly
the form used by HERWIG. However for the branching g → qq̄, which is finite, the z
integral in Eqn. 3.11 is taken from 0 to 1 and the argument of αS is t′. The parameter

t0 is taken in HERWIG to be the square of the fictitious gluon mass (which has a
default value of 0.75 GeV). The variable t′ is a generalized virtuality related to the

energy of a parton E and an ordering variable ξ, so that t′ = E2ξ. In the branching
a → bc,

ξ =
pb · pc

EbEc

. (3.13)

The variable ξ is required to decrease with each emission.

9
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The evolution variable of Herwig
At NLO, find for σ2(mg)≡σtot-∫dσ3

• Define what LL, NLL, etc. means (i.e. in the exponent, so explain that we can work to
tree-level in the matching coefficients. (TODO) TODO: Do we

need this, given
that everybody
agrees with the
LL definition?

3.1 e+e− → 2 Jets

For e+e− → 2 jets the theoretically simplest jet algorithm is the hemisphere jet algorithm.
In this algorithm one uses the thrust axis to define two hemispheres. All particles in each
hemisphere are assigned to a single jet, with the jet direction aligned with the thrust axis.
This yields two back-to-back jets. For the exclusive 2-jet cross section, σ2(tcut), we require
the invariant mass of each jet, i.e. the total invariant mass in each hemisphere, to be less
than tcut.

With this definition, at NLO in perturbation theory we have (abbreviating c = tcut/Q2)

σNLO
2 (tcut) = σ0

{
1− αs(µ)CF

4π

[
4 ln2 c

1− c
+ 6(1− 2c) ln

c

1− 2c
+ 2− 3c(4 + 3c)

+ 8Li2
( c

1− c

)
− 2π2

3

]}

= σ0

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.1)

where σ0 is the total Born cross section for a single quark flavor

σ0 = Nc Q2
q

4πα2
em

3Q2
. (3.2)

Setting c = 1/3 in the first line of Eq. (3.1) correctly reproduces the total NLO cross section,
σNLO

2 = σ0[1 + 3αs(µ)CF /(4π)]. In the second line we expanded in the limit tcut # Q2.
The angular dependence in the full NLO cross section is quite complicated, but in the

limit tcut # Q2 it simplies to

dσNLO
2

dΩ
(tcut) =

dσ0

dΩ

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.3)

with the Born cross section

dσ0

dΩ
= Nc Q2

q
α2

em

4Q2
(1 + cos2 θ) . (3.4)

For simplicity we have ignored the Z-boson contribution in the Born cross sections, Eqs. (3.2)
and (3.4), which can be easily included.

In SCET, the cross section at leading order in tcut/Q2 and all orders in perturbation
theory is factorized as [?]

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
H2(Q, Q, µ)

∫
dk+

1 dk+
2 J̃q(tcut −Qk+

1 , µ)J̃q(tcut −Qk+
2 , µ)S2(k+

1 , k+
2 , µ) ,

(3.5)

– 8 –

• Define what LL, NLL, etc. means (i.e. in the exponent, so explain that we can work to
tree-level in the matching coefficients. (TODO) TODO: Do we

need this, given
that everybody
agrees with the
LL definition?

3.1 e+e− → 2 Jets

For e+e− → 2 jets the theoretically simplest jet algorithm is the hemisphere jet algorithm.
In this algorithm one uses the thrust axis to define two hemispheres. All particles in each
hemisphere are assigned to a single jet, with the jet direction aligned with the thrust axis.
This yields two back-to-back jets. For the exclusive 2-jet cross section, σ2(tcut), we require
the invariant mass of each jet, i.e. the total invariant mass in each hemisphere, to be less
than tcut.

With this definition, at NLO in perturbation theory we have (abbreviating c = tcut/Q2)

σNLO
2 (tcut) = σ0

{
1− αs(µ)CF

4π

[
4 ln2 c

1− c
+ 6(1− 2c) ln

c

1− 2c
+ 2− 3c(4 + 3c)

+ 8Li2
( c

1− c

)
− 2π2

3

]}

= σ0

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.1)

where σ0 is the total Born cross section for a single quark flavor

σ0 = Nc Q2
q

4πα2
em

3Q2
. (3.2)

Setting c = 1/3 in the first line of Eq. (3.1) correctly reproduces the total NLO cross section,
σNLO

2 = σ0[1 + 3αs(µ)CF /(4π)]. In the second line we expanded in the limit tcut # Q2.
The angular dependence in the full NLO cross section is quite complicated, but in the

limit tcut # Q2 it simplies to

dσNLO
2

dΩ
(tcut) =

dσ0

dΩ

{
1− αs(µ)CF

4π

[
4 ln2 tcut

Q2
+ 6 ln

tcut

Q2
+ 2− 2π2

3
+O

( tcut

Q2

)]}
, (3.3)

with the Born cross section

dσ0

dΩ
= Nc Q2

q
α2

em

4Q2
(1 + cos2 θ) . (3.4)

For simplicity we have ignored the Z-boson contribution in the Born cross sections, Eqs. (3.2)
and (3.4), which can be easily included.

In SCET, the cross section at leading order in tcut/Q2 and all orders in perturbation
theory is factorized as [?]

dσSCET
2

dΩ
(tcut) =

dσ0

dΩ
H2(Q, Q, µ)

∫
dk+

1 dk+
2 J̃q(tcut −Qk+

1 , µ)J̃q(tcut −Qk+
2 , µ)S2(k+

1 , k+
2 , µ) ,

(3.5)

– 8 –

Compare with

Double logs differ by factor of 2

Herwig Sudakov properly reflects this

Final expression for observable will again agree

Brief Article

The Author

April 6, 2010

t

s + t
≤ z ≤ s

s + t
(1)

t

s
≤ z ≤ 1− t

s
(2)

σNLO
2 (mg) = σ0

{
1− αs(µ)CF

4π

[
2 ln2 m2

g

Q2
+ 6 ln

m2
g

Q2
+ 9− 2π2

3
+O

(
m2

g

Q2

)]}
(3)

1
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Things I did not talk about

Kinematical logarithms

How to resum logs of ni⋄nj in soft function?

Proof that parton shower will get LL right for any 
observable

Extensions to higher jet multiplicities

Momentum reshuffling, power corrections etc

Wednesday, April 7, 2010


