Direct Photon Production with SCET

Matthew Schwartz Harvard University (work done with T. Becher)

SCET workshop, Ringberg Castle, Munich April 9, 2010

SCET AT COLLIDERS

We will start simple and head towards the LHC

CONVERGENCE

We learn that Effective field theory

- Is much more convergent than fixed order QCD
- Improves fit to α_{s} tremendously

Becher/ Schwartz

Abate et al

 $\alpha_{s}(M_{z}) = 0.1172 \pm 2\%$ $\alpha_{s}(M_{z}) = 0.1135 \pm 1\%$

 $\alpha_{s}(M_{Z}) = 0.1274 \pm 5\%$ (fixed order thrust) $\alpha_{s}(M_{Z}) = 0.1176 \pm 2\%$ (World Average)

JETS AT HADRON COLLIDERS

Additional Complications

- 1. Energy distribution in hadrons is **non-perturbative**
 - Use PDFs
 - Understood in SCET (Drell-Yan, DIS, Higgs production)

2. Multiple directions of large energy flow

• Will angle dependence cancel?

3. Multiple channels

 $e^+e^- \rightarrow jets$

 $pp \rightarrow jets$

- $QQ \rightarrow QQ, QQ \rightarrow GG, GG \rightarrow GG$
- Understood for tt, heavy colored states, ...

4. Multiple color configurations

- Dijets understood in traditional QCD
- Now understood in SCET (Randy's talk, tt, ...)

5. Observable must avoid beam

- Hadronic event shapes? [Salam, Zanderighi...]
- Energy flow? [Sterman, Kucs, ...]
- Beam thrust? [Stewart, ...]
- Dynamical Threshold Enhancement? [Becher, Neubert...]

JETS AT HADRON COLLIDERS

 $pp \rightarrow jet + \gamma$ γ

 $pp \rightarrow jets$

Direct photon production

Addresses some of the additional complications

 Multiple Directions
 Multiple Channels (QQ→Gγ and QG→Qγ)

 Important early LHC measurement

 measure gluon PDF
 calibrate jet energy scales

WHAT IS THE OBSERVABLE?

 m_J

 m_J

 M_X

- We expect resummation to be important as $m_J^2
 ightarrow 0$
- Simplest observables will have few parameters
 - Can we avoid dealing with jet definition? (non-global logs? Start simple!)

Machine Threshold limit

- Initial state: 2 protons
- •Final state: 1 jet + 1 photon+ soft radiation only (no jet-like proton remnants)

Assumption for SCET factorization theorem

Observable is photon p_T and rapidity (y)

Inclusive measurment -- no jet definition necessary

Factorization derived at small M_x

 M_{χ} = mass of everything-but-the-photon

 $M_X^2 = E_{\rm CM}^2 - 2p_T E_{\rm CM} \cosh y$

• M_X typically large – so why is this regime interesting?

THRESHOLD ENHANCEMENT

DIRECT PHOTON PRODUCTION

h

Perturbation Theory

Leading Order

Compton Channel (important way to measure gluon PDF)

V

Annihilation Channel

FACTORIZATION IN SCET

 $\mathcal{O}^{\nu} = \bar{\psi}_{n_1} A^{\nu}_{n_2} \psi_{n_3}$ $\bar{\chi}_{n_1} \mathcal{A}^{\nu}_{n_2} \chi_{n_3} \longrightarrow$ $ar{\chi_1}Y_1^\dagger Y_2 \mathcal{A}_2^{
u a} au^a Y_2^\dagger Y_3 \chi_3$ Hard scale Jet scale Soft scale $\langle p_1 p_2 | \mathcal{O}^{\nu}(x) \mathcal{O}^{\nu}(0) | p_1 p_2 \rangle = \langle p_1 | \overline{\chi}_1 \chi_1 | p_1 \rangle$ $\langle 0 | \mathcal{A}_2^{\nu} \mathcal{A}_2^{\nu} | 0 \rangle$ $\langle p_1 | \bar{\chi}_3 \chi_3 | p_1 \rangle$ PDF $\langle 0 | (Y_1^{\dagger}Y_2 au^a Y_2^{\dagger}Y_3) (Y_1^{\dagger}Y_2 au^a Y_2^{\dagger}Y_3) | 0
angle$ PDF Jet function Soft function

FACTORIZATION IN SCET

FINAL DISTRIBUTION

Direct photon distribution with NNLL resummation + NLO fixed order

WHAT ARE THE MATCHING SCALES?

 m_J^2 = mass of jet

Matching scales appear as:

 $\frac{\mu_h^2}{p_T^2}, \quad \frac{\mu_j^2}{m_J^2}, \quad \frac{\mu_s}{\mu_j^2/\mu_h}$ Hard scale = p_T Jet scale = m_J ? •Works for thrust $d\sigma$

•Works for thrust $\frac{d\sigma}{dm_J^2} \sim \exp\left[\alpha_s \log \frac{m_J^2}{E_{\rm CM}^2}\right]$

•Problematic for direct photon • m_J is integrated over, including $m_J = 0$ $\frac{d\sigma}{dM_X^2} = \int dm_J^2 \delta(M_X^2 - m_J^2 - (1 - x_1)\frac{t}{s} - (1 - x_2)\frac{u}{s})f(m_J^2, \cdots)$ $f \sim \exp\left[\alpha_s(\mu_J)\log\frac{\mu_J^2}{\mu_h^2}\right] \times \cdots \to \exp\left[\alpha_s(m_J)\log\frac{m_J^2}{p_T^2}\right] \times \cdots$

probes Landau pole of QCD → unphysical power corections

All matching scales should depend only physical, observable scales -i.e. p_T

NATURAL SCALES

Steve Ellis: "m = pt/5"

 $\mu_{\rm J}$ really is close to the mass of the partonic jet

DYNAMICAL THRESHOLD ENHANCEMENT

Some analytic understanding... $f(y, \mu_f) \propto (1-y)^b$

DYNAMICAL THRESHOLD ENHANCEMENT

(mass of everything but the photon)

 M_X

 m_{I}

(mass of jet)

We have found

 $\mu_J = \langle m_J \rangle \lesssim p_T^{\gamma} \\ \ll M_X \sim E_{\rm CM}$

small

Dynamical Threshold Enhancement

Resummation unexpectedly important at hadron collliders!

What about x not being close to 1?

MATCHING

•PDFs evolve with DGLAP equations

$$\frac{df_i(x,\mu)}{d\log\mu} \sim \int dz \left\{ \alpha_s \left[\frac{1+z^2}{1-z} \right]_+ + \cdots \right\} f_i(\frac{x}{z},\mu)$$

• $\mu_{\rm f}$ dependence in exact NLO distribution cancels $\mu_{\rm f}$ dependence of PDFs – to order α_s^2

•SCET valid near threshold ($x_1 \sim 1 \, {\rm and} \, x_2 \sim 1$) $\bullet \, \mu_{\rm f}$ would cancel if

$$\frac{df_i(x,\mu)}{d\log\mu} \sim \int dz \left\{ \alpha_s \left[\frac{2}{1-z} \right]_+ + \cdots \right\} f_i(\frac{x}{z},\mu)$$

• By matching NNLL resummation to NLO fixed order • $\mu_{\rm f}$ dependence cancels exactly to order α_s^2 • $\mu_{\rm f}$ dependence cancels partially to order α_s^4

MATCHING

Matching to exact NLO distribution reduces μ_{f} dependence

SCALE UNCERTAINTIES

RESULTS

1.0

PREDICTIONS FOR LHC

CLOSE TO JETS SHAPES

Additional Complications

- 1. Energy distribution in hadrons is non-perturbative
 - Use PDFs
 - Understood in SCET (Drell-Yan, DIS, Higgs production)
- 2. Multiple directions of large energy flow
 - Will angle dependence cancel? Yes.

3. Multiple channels

• $QQ \rightarrow QQ, QQ \rightarrow GG, GG \rightarrow GG$

4. Multiple color configurations

Work in progress with R. Kelley

5. Observable must avoid beam

- Beam functions?
- Exclusive jets
- Threshold Thrust -> jet pT?
- Dynamical threshold enhancement?

 $pp \rightarrow jets$

 $e^+e^- \rightarrow jets$

LESSONS

× LEP event shapes

- + Convergence improved over fixed-order
- Resummation at NNNLL possible and quantitatively important for jet masses

× Direct photon

- + NNLL resummation at hardon colliders important
- + Threshold resummation works away from threshold
- + x<1 evolution nicely corrected with matching

× Next steps

- + W/Z + jets (work in progress with T. Becher)
- + Dijet RGEs, color structures (work in progress with R. Kelley)
- + Observables, Jet algorithms (many other people)
- × Understanding jets is critical for the LHC