Glauber Gluons \& SCET

Grigory Ovanesyan
 UC Berkeley\&LBNL

in collaboration with
Christian Bauer \& Bjorn Lange
earlier stages:
Christopher Lee, Zoltan Ligeti

Introduction

 Bowdin, Brodsky, Lepage, ‘8।Where the "Glauber" Issue Arises? Collins, Soper, Sterman, `82 Bowdin, ‘85

- Factorization of the Drell-Yan process
- Loop diagrams contain a Glauber region which gives a leading order IR divergent contribution (on top of Soft and Collinear regions)
- "Glaubers" break the traditional factorization of the exclusive Drell-Yan cross-section
- In the inclusive cross-section this contribution cancels: $\mathrm{G}+\mathrm{G}^{*}=0$ and factorization is restored

Do we need Glauber modes in the Effective Theory?

Introduction

Why is the presence of Glauber modes important?

- Glauber interactions happen between initial state spectator partons and they break the simple factorization in the exclusive cross-section
- Factorization is the key ingredient to make predictions for high energy QCD cross-sections
- Factorization of any process in hadron-hadron collisions needs analysis of Glauber modes
- Conseptual issue: do we have all the necessary low energy modes included into SCET?
- "Glaubers" play an important role for jet propagating in dense QCD media (Idilbi, Majumder `08)

Introduction

Drell-Yan: tree level

$$
\begin{array}{ll}
\bar{p}, p \propto\left(I, \lambda^{2}, \lambda\right) & P_{M 1}=\bar{p}+p \\
\bar{q}, q \propto\left(\lambda^{2}, I, \lambda\right) & P_{M 2}=\bar{q}+q
\end{array}
$$

Introduction

Drell-Yan: tree level

$$
\begin{array}{ll}
\bar{p}, p \propto\left(I, \lambda^{2}, \lambda\right) & P_{M 1}=\bar{p}+p \\
\bar{q}, q \propto\left(\lambda^{2}, I, \lambda\right) & P_{M 2}=\bar{q}+q
\end{array}
$$

Glauber gluon: $I\left(\lambda^{2}, \lambda^{2}, \lambda\right)$

Introduction

Drell-Yan: tree level

$$
\begin{array}{ll}
\bar{p}, p \propto\left(I, \lambda^{2}, \lambda\right) & P_{M 1}=\bar{p}+p \\
\bar{q}, q \propto\left(\lambda^{2}, I, \lambda\right) & P_{M 2}=\bar{q}+q
\end{array}
$$

Glauber gluon: $I\left(\lambda^{2}, \lambda^{2}, \lambda\right)$

Introduction

Drell-Yan: tree level

$$
\begin{array}{ll}
\bar{p}, p \propto\left(I, \lambda^{2}, \lambda\right) & P_{M 1}=\bar{p}+p \\
\bar{q}, q \propto\left(\lambda^{2}, I, \lambda\right) & P_{M 2}=\bar{q}+q
\end{array}
$$

Glauber gluon: $I\left(\lambda^{2}, \lambda^{2}, \lambda\right)$

Off-shellness as an infrared regulator

Introduction

Pinch analysis of loop integrals $\quad I(z)=\int_{C} \mathrm{~d} x f(x, z)$

Introduction

Pinch analysis of loop integrals $\quad I(z)=\int_{C} \mathrm{~d} x f(x, z)$

$$
I\left(z \rightarrow z_{0}\right)=?
$$

a
Not a true singularity, can be avoided by deforming the contour

Collins, Soper, Sterman, ‘82

Introduction

Factorization of Drell-Yan:Active-Active.

$$
\mathrm{n}
$$

$$
\bar{n}
$$

- The pinched singularities appear only in the collinear n, collinear \bar{n} and soft regions
- Glauber region is not pinched, thus no infrared divergence comes from solely Glauber region

Collins, Soper, Sterman, ‘82
Factorization of Drell-Yan:Spectator-Active

- The leading pinched singularities appear only in the collinear n and soft regions
- Glauber region is not pinched, thus no infrared divergence comes from solely
Glauber region

Collins, Soper, Sterman, ` 82
Factorization of Drell-Yan: Spectator-Spectator

- The pinched singularities appear in the Soft and Glauber regions
- This mode break the simple factorization of DrellYan exclusive cross-section

Collins, Soper, Sterman, ' 82

Introduction

Factorization and cancellation of Glaubers

- Glauber contribution is shown to be purely imaginary
- Thus it cancels in the inclusive cross-section
- These one-loop results are generalized to all orders

Our goal: should we include Glauber modes into Effective Theory?

A Matching calculation for Drell-Yan

Idea of the calculation

- We want to set up a matching calculation which involves Drell-Yan one loop diagrams
- Should be a matching between QCD and EFT , and EFT_{2}, where

$$
\begin{aligned}
& \mathrm{EFT}_{1}=\mathrm{SCET} \text { (collinear, ultrasoft) } \\
& \mathrm{EFT}_{2}=\mathrm{SCET}+\text { Glaubers }
\end{aligned}
$$

- By comparing the two matching calculations we should be able to find out which effective theory consistently describes the Drell-Yan amplitude

Operator O_{2}

Definition

Operator O_{2} arises from matching the QCD current onto a 2-jet Effective Theory:

$$
\begin{aligned}
& \mathcal{J}=\bar{q} \Gamma q \\
& \mathcal{J}=C_{2} O_{2}
\end{aligned}
$$

where O_{2} is defined as:

$$
O_{2}=\chi_{n} \Gamma \chi_{\bar{n}}
$$

C_{2} is Wilson coefficient which is well known to higher orders

Operator O_{2}

The Idea

Simplest final states to calculate C_{2} are $<0 \mid$ and $\mid q \bar{q}>$:

$$
<0| |\left|q \bar{q}>=\mathrm{C}_{2}<0\right| \mathrm{O}_{2} \mid q \bar{q}>
$$

For our purpose we will chose instead states: $<\gamma \gamma \mid$ and $\mid q \bar{q}>$

$$
<\gamma \gamma|J| q \bar{q}>=\mathrm{C}_{2}<\gamma \gamma\left|\mathrm{O}_{2}\right| q \bar{q}>\xrightarrow{\mathrm{EFT}_{1} \quad \mathrm{C}_{2}=? \text { ? }}
$$

Operator O_{2}

The Idea

Simplest final states to calculate C_{2} are $<0 \mid$ and $\mid q \bar{q}>$:

$$
<0| |\left|q \bar{q}>=\mathrm{C}_{2}<0\right| \mathrm{O}_{2} \mid q \bar{q}>
$$

For our purpose we will chose instead states: $\langle\gamma \gamma|$ and $\mid q \bar{q}>$

$$
<\gamma \gamma|J| q \bar{q}>=\mathrm{C}_{2}<\gamma \gamma\left|\mathrm{O}_{2}\right| q \bar{q}>\xrightarrow{\mathrm{EFT}_{1} \quad \mathrm{C}_{2}=? \text { ? }}
$$

We know the answer for C_{2}

Active-Active topology

$\mathrm{QCD}=\mathrm{I}_{3}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}(l-\bar{q})^{2}}$
n-collinear $\left(I, \lambda^{2}, \lambda\right)$:

$$
\mathrm{C}_{n}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}\left[-\bar{q}^{-} l^{+}\right]} \propto \boldsymbol{\lambda}^{-4}
$$

\bar{n}-collinear $\left(\lambda^{2}, I, \lambda\right)$:

$$
\mathrm{C}_{\bar{n}}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}\left[p^{+} l^{-}\right](l-\bar{q})^{2}} \propto \lambda^{-4}
$$

Soft $\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$:

$$
\mathbf{S}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}\left[p^{+} l^{-}+p^{2}\right]\left[-\bar{q}^{-} l^{+}+\bar{q}^{2}\right]} \propto \boldsymbol{\lambda}^{-4}
$$

EFT_{2}
Glauber ($\left.\lambda^{2}, \lambda^{2}, \lambda\right)$:

$$
\mathbf{G}_{\mathrm{n}}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[-l_{\perp}^{2}\right]\left[p^{+}\left(l^{-}+p^{-}\right)-\left(l_{\perp}+p_{\perp}\right)^{2}\right]\left[-\bar{q}^{-}\left(l^{+}-\bar{q}^{+}\right)-\left(l_{\perp}-\bar{q}_{\perp}\right)^{2}\right]} \propto \lambda^{-4}
$$

Zero-bin subtractions in EFT_{2}

Manohar, Stewart ('06)

Zero-bin subtractions in EFT_{2}

Manohar, Stewart ('06)

Zero-bin subtractions in EFT_{2}

Manohar, Stewart ('06)

$$
C_{n}=C-\left(C_{g}-C_{g s}+C_{s}\right)
$$

Collinear

Zero-bin subtractions in EFT_{2}

Manohar, Stewart ('06)

$$
C_{n}=C-\left(C_{g}-C_{g s}+C_{s}\right)
$$

Soft Glauber

λ^{2}
$\lambda \quad \mathrm{k}_{\perp}$

Zero-bin subtractions in EFT_{2}

Manohar, Stewart ('06)

$$
C_{n}=C-\left(C_{g}-C_{g s}+C_{s}\right)
$$

$$
\mathrm{G}_{\mathrm{n}}=\mathrm{G}-\mathrm{G}_{\mathrm{s}}
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+C_{\bar{n}}-\left(C_{\bar{n} g}-C_{\bar{n} g s}+C_{s}\right)+G_{n}-G_{s}+S=
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{\mathrm{s}}+\mathrm{S} \\
\mathrm{C}_{\mathrm{s}}=\mathrm{S}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+C_{\bar{n}}-\left(C_{\bar{n} g}-C_{\bar{n} g s}+C_{s}\right)+G_{n}-G_{s}+S=
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{C}_{\mathrm{s}}=\mathrm{S}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+C_{\bar{n}}-\left(C_{\bar{n} g}-C_{\bar{n} g s}+C_{s}\right)+G_{n}-G_{s}+S=
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{C}_{\mathrm{s}}=\mathrm{S}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+C_{\bar{n}}-\left(C_{\bar{n} g}-C_{\bar{n} g s}+C_{s}\right)+G_{n}-G_{s}+S=
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
E F T_{I}=C_{n}-C_{s}+C_{\bar{n}}-C_{s}+S=C_{n}+C_{\bar{n}}-S \\
C_{s}=S \quad I_{3}-E F T_{I}=C_{2}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+C_{\bar{n}}-\left(C_{\bar{n} g}-C_{\bar{n} g s}+C_{s}\right)+G_{n}-G_{s}+S=
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{I}=\mathrm{C}_{n}-\mathrm{C}_{s}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{C}_{s}=\mathrm{S} \quad \mathrm{I}_{3}-\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{2}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
\begin{aligned}
& \mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n g}-\mathrm{C}_{n g s}+\mathrm{C}_{s}\right)+\mathrm{C}_{\bar{n}}-\left(\mathrm{C}_{\bar{n} g}-\mathrm{C}_{\bar{n} g \mathrm{~s}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{n}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}= \\
& \mathrm{C}_{\mathrm{s}}=\mathrm{S} \\
& \mathrm{C}_{n g}=\mathrm{C}_{n g s}=\mathrm{G}_{n} \\
& \mathrm{G}_{\mathrm{s}}=\mathrm{G}_{n}
\end{aligned}
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{I}=\mathrm{C}_{n}-\mathrm{C}_{s}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{C}_{s}=\mathrm{S} \quad \mathrm{I}_{3}-\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{2}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
\begin{array}{ll}
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n g}-\mathrm{C}_{n g s}+\mathrm{C}_{s}\right)+\mathrm{C}_{\bar{n}}-\left(\mathrm{C}_{\bar{n} g}-\mathrm{C}_{\bar{n} g \mathrm{~s}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{n}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}= \\
& =\mathrm{C}_{\mathrm{s}}=\mathrm{S} \\
\mathrm{C}_{n g}=\mathrm{C}_{n g s}=\mathrm{G}_{n} & \\
\mathrm{G}_{\mathrm{s}}=\mathrm{G}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S}
\end{array}
$$

Active-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\begin{gathered}
E F T_{I}=C_{n}-\mathrm{C}_{s}+\mathrm{C}_{\bar{n}}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{C}_{\mathrm{s}}=\mathrm{S} \quad \mathrm{I}_{3}-\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{2}
\end{gathered}
$$

In the Second effective theory all modes including overlaps equal:

$$
\begin{gathered}
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n g}-\mathrm{C}_{n g s}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{C}_{\bar{n}}-\left(\mathrm{C}_{\bar{n} g}-\mathrm{C}_{\bar{n} g \mathrm{~s}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{\mathrm{n}}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}= \\
\begin{array}{l}
\mathrm{C}_{\mathrm{s}}=\mathrm{S} \\
\mathrm{C}_{n g}=\mathrm{C}_{n g s}=\mathrm{C}_{n}+\mathrm{C}_{\bar{n}}-\mathrm{S} \\
\mathrm{G}_{\mathrm{s}}=\mathrm{G}_{\mathrm{n}} \\
\text { So, for active-active graph we find: } \\
\mathrm{EFT}_{I} \equiv \mathrm{EFT}_{2}
\end{array}
\end{gathered}
$$

Status of the calculation

$\langle\gamma \gamma| \|\left|q \bar{q}>=\mathrm{C}_{2}<\gamma \gamma\right| \mathrm{O}_{2} \mid q \bar{q}>\longrightarrow \mathrm{EFT}_{2} \mathrm{C}_{2}=\mathrm{C}_{2}+?+$?

Spectator-Active topology

$\mathrm{QCD}=\mathrm{l}_{4}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[(l-\bar{q})^{2}\right]}$
n-collinear $\left(1, \lambda^{2}, \lambda\right)$:

$$
\mathrm{C}_{n}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[-l^{+} \bar{q}^{-}\right]} \propto \boldsymbol{\lambda}^{-4}
$$

\bar{n}-collinear $\left(\lambda^{2}, I, \lambda\right)$:

$$
\mathrm{C}_{\bar{n}}=\int \frac{\mathrm{d}^{D_{l}}}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[-\bar{p}^{+} l-\right]\left[p^{+} l^{-}+p^{2}\right]\left[(l-\bar{q})^{2}\right]} \propto \lambda^{-2}
$$

Soft $\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$:

$$
: S=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left.\left[l^{2}\right]\right]\left[-\bar{p}^{+} l^{-}+\bar{p}^{2}\right]\left[p^{+} l^{-}+p^{2}\right]\left[-\bar{q}^{-} l^{+}+\bar{q}^{2}\right]} \propto \boldsymbol{\lambda}^{-4}
$$

Glauber ($\left.\lambda^{2}, \lambda^{2}, \lambda\right)$:

$$
\left.\left.\mathbf{G}_{\mathrm{n}}=\int \frac{\mathrm{d}^{D_{l}}}{\left.(2 \pi)^{D}\left[l^{2}\right]\right]\left[-\bar{p}^{+}\left(l--\bar{p}^{-}\right)\right.}-\left(l_{\perp}-\bar{p}_{\perp}\right)^{2}\right]\left[p^{+}\left(l-+l^{-}\right)-\left(l_{\perp}+p_{\perp}\right)^{2}\right]\left[-\bar{q}^{-}\left(l^{+}-\bar{q}^{+}\right)-\left(l_{\perp}-\bar{q}_{\perp}\right)^{2}\right]\right] \quad \lambda^{-4}
$$

EFT,
EFT_{2}

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+G_{n}-G_{s}+S
$$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{1}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}
$$

relationship between zero-bins: $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=C_{n}-\left(C_{n g}-C_{n g s}+C_{s}\right)+G_{n}-G_{s}+S
$$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{1}=\mathrm{C}_{n}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship between zero-bins: $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{2}=\mathrm{C}_{n}\left(\mathrm{C}_{n \mathrm{~g}}-\mathrm{C}_{n g \mathrm{~s}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{n}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}
$$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{1}=\mathrm{C}_{n}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship between zero-bins: $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n \mathrm{~g}}-\mathrm{C}_{n \mathrm{gs}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{\mathrm{n}}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}
$$

relationship $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
$\begin{array}{ll}\text { between } & C_{n g}=G_{n} \\ \text { zero-bins: } & C_{n g s}=G_{n s}\end{array}$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{1}=\mathrm{C}_{n}-\mathrm{C}_{s}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship between zero-bins: $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n g}-\mathrm{C}_{n g s}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{\mathrm{n}}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
$\begin{array}{ll}\text { between } & \mathrm{C}_{n g}=\mathrm{G}_{n} \\ \text { zero-bins: } & \mathrm{C}_{n g \mathrm{~s}}=\mathrm{G}_{\mathrm{ns}}\end{array}$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship between zero-bins: $\mathrm{C}_{5}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n \mathrm{~g}}-\mathrm{C}_{n \mathrm{gs}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{\mathrm{n}}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
between
zero-bins:

So, for spectator-active graph we find: $E F T_{1} \equiv \mathrm{EFT}_{2}$

Spectator-Active topology

Contribution to the matching

In the First effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{\mathrm{I}}=\mathrm{C}_{n}-\mathrm{C}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship between zero-bins: $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
In the Second effective theory all modes including overlaps equal:

$$
\mathrm{EFT}_{2}=\mathrm{C}_{n}-\left(\mathrm{C}_{n \mathrm{~g}}-\mathrm{C}_{n g \mathrm{~s}}+\mathrm{C}_{\mathrm{s}}\right)+\mathrm{G}_{\mathrm{n}}-\mathrm{G}_{\mathrm{s}}+\mathrm{S}=\mathrm{C}_{n}
$$

relationship $\mathrm{C}_{\mathrm{s}}=\mathrm{S}$
between $\quad C_{n g}=G_{n}$
$C_{n g s}=G_{n s}$

So, for spectator-active graph we find: $\mathrm{EFT}_{1} \equiv \mathrm{EFT}_{2}$
$\Delta \mathrm{C}_{2}=\left(\mathrm{l}_{4}-\mathrm{C}_{\mathrm{n}}\right) /$ Tree $=$?

Spectator-Active topology

Contribution to the matching

$$
\begin{aligned}
& \mathbf{I}_{4}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[(l-\bar{q})^{2}\right]}= \\
& =\frac{i}{16 \pi^{2}} \cdot \frac{1}{\bar{q}^{-}} \cdot \frac{1}{\bar{p}^{2} p^{+}+p^{2} \bar{p}^{+}}\left[\frac{\pi^{2}}{3}-2 \operatorname{Li}_{2}\left(\frac{1}{2-\frac{p^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}}\right)+\left(\ln \left(\frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}\right)-i \pi\right) \ln \left(\frac{2 \frac{\bar{p}^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}+1}{2 \frac{\bar{p}^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}-1}\right)\right]
\end{aligned}
$$

Spectator-Active topology

Contribution to the matching

$\mathbf{I}_{\mathbf{4}}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[(l-\bar{q})^{2}\right]}=$
$=\frac{i}{16 \pi^{2}} \cdot \frac{1}{\bar{q}^{-}} \cdot \frac{1}{\bar{p}^{2} p^{+}+p^{2} \bar{p}^{+}}\left[\frac{\pi^{2}}{3}-2 \operatorname{Li}_{2}\left(\frac{1}{2-\frac{p^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}}\right)+\left(\ln \left(\frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}\right)-i \pi\right) \ln \left(\frac{2 \frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}+1}{2 \frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}-1}\right)\right]$
Comparing reduced to 2 Feynman parameter integrals there is an exact relation between the I_{4} and C_{n} :
$I_{4} \equiv I_{4}\left[p^{2},(\bar{p}-\bar{q})^{2}, \bar{p}^{2},(p+\bar{p})^{2},(p+\bar{q})^{2}, \bar{q}^{2}\right]$
$C_{n} \equiv I_{4}\left[p^{2}, \bar{q}^{2}-\bar{p}^{+} \bar{q}^{-}, \bar{p}^{2},(p+\bar{p})^{2}, p^{+} \bar{q}^{-}+\bar{q}^{2}, \bar{q}^{2}\right] \equiv I_{4}\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$

Spectator-Active topology

Contribution to the matching

$\mathbf{l}_{4}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[(l-\bar{q})^{2}\right]}=$
$=\frac{i}{16 \pi^{2}} \cdot \frac{1}{\bar{q}^{-}} \cdot \frac{1}{\bar{p}^{2} p^{+}+p^{2} \bar{p}^{+}}\left[\frac{\pi^{2}}{3}-2 \operatorname{Li}_{2}\left(\frac{1}{2-\frac{p^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}}\right)+\left(\ln \left(\frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}\right)-i \pi\right) \ln \left(\frac{2 \frac{\bar{p}^{2} p^{+}}{\bar{p}^{p^{+}}}+1}{2 \frac{\bar{p}^{+} p^{+}}{p^{2}}-1}\right)\right]$
Comparing reduced to 2 Feynman parameter integrals there is an exact relation between the I_{4} and C_{n} :
$I_{4} \equiv I_{4}\left[p^{2},(\bar{p}-\bar{q})^{2}, \bar{p}^{2},(p+\bar{p})^{2},(p+\bar{q})^{2}, \bar{q}^{2}\right]$
$C_{n} \equiv I_{4}\left[p^{2}, \bar{q}^{2}-\bar{p}^{+} \bar{q}^{-}, \bar{p}^{2},(p+\bar{p})^{2}, p^{+} \bar{q}^{-}+\bar{q}^{2}, \bar{q}^{2}\right] \equiv I_{4}\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$
$\Delta \mathrm{C}_{2}=\left(\mathrm{l}_{4}-\mathrm{C}_{\mathrm{n}}\right) /$ Tree $=0$

Spectator-Active topology

Contribution to the matching

$\mathbf{l}_{4}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}\right]\left[(l-\bar{p})^{2}\right]\left[(l+p)^{2}\right]\left[(l-\bar{q})^{2}\right]}=$
$=\frac{i}{16 \pi^{2}} \cdot \frac{1}{\bar{q}^{-}} \cdot \frac{1}{\bar{p}^{2} p^{+}+p^{2} \bar{p}^{+}}\left[\frac{\pi^{2}}{3}-2 \operatorname{Li}_{2}\left(\frac{1}{2-\frac{p^{2} p^{+}}{\bar{p}^{2} \bar{p}^{+}}}\right)+\left(\ln \left(\frac{\bar{p}^{2} p^{+}}{p^{2} \bar{p}^{+}}\right)-i \pi\right) \ln \left(\frac{2 \frac{\bar{p}^{2} p^{+}}{p^{+} \bar{p}^{+}}+1}{2 \bar{p}^{2} \bar{p}^{+}}-1\right)\right]$
Comparing reduced to 2 Feynman parameter integrals there is an exact relation between the I_{4} and C_{n} :
$I_{4} \equiv I_{4}\left[p^{2},(\bar{p}-\bar{q})^{2}, \bar{p}^{2},(p+\bar{p})^{2},(p+\bar{q})^{2}, \bar{q}^{2}\right]$
$C_{n} \equiv I_{4}\left[p^{2}, \bar{q}^{2}-\bar{p}^{+} \bar{q}^{-}, \bar{p}^{2},(p+\bar{p})^{2}, p^{+} \bar{q}^{-}+\bar{q}^{2}, \bar{q}^{2}\right] \equiv I_{4}\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$
$\Delta \mathrm{C}_{2}=\left(\mathrm{l}_{4}-\mathrm{C}_{\mathrm{n}}\right) /$ Tree $=0$
In both effective theories contribution to the matching coefficient is zero

Status of the calculation

$\langle\gamma \gamma| \|\left|q \bar{q}>=\mathrm{C}_{2}<\gamma \gamma\right| \mathrm{O}_{2} \mid \mathrm{q} \overline{\mathrm{q}}>\longrightarrow \mathrm{EFT}_{2} \mathrm{C}_{2}=\mathrm{C}_{2}+\mathrm{O}+$?

Spectator-Spectator topology

$\mathrm{QCD}=\mathrm{I}_{5}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l-\bar{p})^{2}(l+p)^{2}(l-\bar{q})^{2}(l+q)^{2}}$
n-collinear $\left(I, \lambda^{2}, \boldsymbol{\lambda}\right): \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l-\bar{p})^{2}(l+p)^{2}\left[-l^{+} \bar{q}^{-}\right]\left[l^{+} q^{-}\right]} \propto \boldsymbol{\lambda}^{-2}$
$\overline{\mathrm{n}}$-collinear $\left(\boldsymbol{\lambda}^{2}, \mathbf{I}, \boldsymbol{\lambda}\right): \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}\left[-l^{-} \bar{p}^{+}\right]\left[l^{-} p^{+}\right](l-\bar{q})^{2}(l+q)^{2}} \propto \boldsymbol{\lambda}^{-2}$
Soft $\left(\boldsymbol{\lambda}^{2}, \boldsymbol{\lambda}^{2}, \boldsymbol{\lambda}^{2}\right): \quad \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{\overline{2}^{2}\left[-l-\bar{p}^{+}+\bar{p}^{2}\right]\left[l^{-} p^{+}+p^{2}\right]\left[-l+\bar{q}^{-}+\bar{q}^{2}\right]\left[l^{+}+q^{-}+q^{2}\right]} \propto \boldsymbol{\lambda}^{-4}$

Glauber $\left(\lambda^{2}, \lambda^{2}, \lambda\right)$:
$\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{}{\left[-l_{\perp}^{2}\right]\left[-\bar{p}^{+}\left(l^{-}-\right.\right.}$
Wednesday, April 7, 2010

Spectator-Spectator topology

Contribution to the matching

In the First effective theory we have only Soft mode present:

$$
E F T_{I}=S=\left(I / \varepsilon_{u V}+I / \varepsilon_{I R}+\text { finite }\right)
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=G_{n}-G_{s}+S \quad\left(G_{s}=0 \text { and } G_{n} \neq 0\right)
$$

Spectator-Spectator topology

Contribution to the matching

In the First effective theory we have only Soft mode present:

$$
E F T_{I}=S=\left(I / \varepsilon u V+I / \varepsilon_{\mid R}+\text { finite }\right)
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=G_{n}-G_{s}+S \quad\left(G_{s}=0 \text { and } G_{n} \neq 0\right)
$$

- So, for spectator-active graph EFT_{1} and EFT_{2} are Not equivalent

Spectator-Spectator topology

Contribution to the matching

In the First effective theory we have only Soft mode present:

$$
E F T_{I}=S=\left(I / \varepsilon u V+I / \varepsilon_{\mid R}+\text { finite }\right)
$$

In the Second effective theory all modes including overlaps equal:

$$
E F T_{2}=G_{n}-G_{s}+S \quad\left(G_{s}=0 \text { and } G_{n} \neq 0\right)
$$

- So, for spectator-active graph $E F T_{1}$ and EFT_{2} are Not equivalent
- In the matching $l_{5}-E F T_{1}$ there is an extra UV divergence which will change the anomalous dimension of C_{2}

Spectator-Spectator topology

Matching contribution in EFT_{2}
Pentagon integral is reduced to sum of 5 box integrals:

$$
\begin{array}{r}
\mathbf{1 5}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}\left(q+\bar{q}^{-}\right)^{2}}\left(\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+} \bar{p}^{2}}\right) \ln \left(\frac{q^{-} \bar{q}^{2}}{\bar{q}^{-} q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\bar{p}^{+} p^{+} \bar{q}^{-} q^{-} Q^{4}}\right)+\pi^{2}\right)\right]+ \\
\frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)
\end{array}
$$

Spectator-Spectator topology

Matching contribution in EFT_{2}
Pentagon integral is reduced to sum of 5 box integrals:

$$
\begin{array}{r}
\mathbf{I}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}\left(q+\bar{q}^{-}\right)^{2}}\left(\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+} \bar{p}^{2}}\right) \ln \left(\frac{q^{-} \bar{q}^{2}}{\bar{q}^{-} q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\bar{p}^{+} p^{+} \bar{q}^{-} q^{-} Q^{4}}\right)+\pi^{2}\right)\right] \boldsymbol{+} \\
\frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)
\end{array}
$$

$$
\mathrm{S}=\frac{i}{16 \pi^{2}} \overline{p^{+}+\bar{p}^{+}+(p+\bar{p})^{2} q-\bar{q}-\left(q+\bar{q}^{-}\right)^{2}}\left[-\frac{2 i \pi}{\epsilon}+\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+}+\bar{p}^{2}}\right) \ln \left(\frac{q-\bar{q}^{2}}{\bar{q} q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\left(p^{+} \bar{q}-\mu^{4}\right.}\right)+3 \pi^{2}\right]
$$

Spectator-Spectator topology

Matching contribution in EFT_{2}

Pentagon integral is reduced to sum of 5 box integrals:

$$
\frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)
$$

$$
\mathbf{G}_{\mathrm{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-\bar{q}}(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+\right.
$$

$$
\left.+\frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}-(q+\bar{q})^{2}}\right)}{q^{-\bar{q}}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{\left.Q^{+}+\bar{p}^{4}+\bar{p}+\bar{p}\right)^{2}}{}\right)}{p^{+}+\bar{p}^{+}(p+\bar{p})^{2}}\right)\right]
$$

Spectator-Spectator topology

Matching contribution in EFT_{2}

Pentagon integral is reduced to sum of 5 box integrals:

$$
\begin{aligned}
& \frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}=\frac{i}{16 \pi^{2} p^{+}+\bar{p}^{+}\left(p+\overline{p^{2}} q^{2}-\bar{q}-\left(q+\bar{q}^{-}\right)^{2}\right.}\left[-\frac{2 i \pi}{\epsilon}+\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+}+\bar{p}^{2}}\right) \ln \left(\frac{q-\bar{q}^{2}}{\bar{q}-q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\overline{p^{+}} p^{-\bar{q}}-q^{-} \mu^{4}}\right)+3 \pi^{2}\right] \\
& \mathrm{G}_{\mathrm{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-\bar{q}}-(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+\right. \\
& \left.+\frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}-(q+\bar{q})^{2}}\right)}{q^{-}-\bar{q}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+}+p^{4}+\bar{p}+\overline{)^{2}}}\right)}{p^{+}+(p+\bar{p})^{2}}\right)\right]
\end{aligned}
$$

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

Matching contribution in EFT_{2}

UV divergence
Pentagon integral is reduced to sum of 5 box integrals:

$$
\frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}(q+\bar{q})}\right)}{q^{-\bar{q}}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+}+\bar{p}+(p+\bar{p})^{2}}\right)}{p^{+} \overline{p^{+}}(p+\bar{p})^{2}}\right)+\mathcal{O}\left(\epsilon, \frac{1}{\lambda^{2}}\right)
$$

$$
\begin{aligned}
\mathbf{S}= & \frac{i}{16 \pi^{2}} \frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}\left(q+\bar{q}^{-}\right)^{2}}\left[(\bigcup)+\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+} \bar{p}^{2}}\right) \ln \left(\frac{q^{-} \bar{q}^{2}}{\bar{q}^{-} q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\bar{p}^{+} p^{+} \bar{q}^{-} q^{-} \mu^{4}}\right)+3 \pi^{2}\right] \\
\mathbf{G}_{\mathrm{n}} & =\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}(q+q)^{2}}\left(\frac{2 \pi}{\epsilon}\right)-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right) \mathbf{+} \\
& \left.+\frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)\right]
\end{aligned}
$$

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

 Matching contribution in $\mathrm{EFT}_{2} \quad \mathrm{IR}$ divergencePentagon integral is reduced to sum of 5 box integrals:

$$
\begin{aligned}
& \mathbf{G}_{\mathrm{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-\bar{q}}-(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+\right. \\
& \left.+\frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}-(q+\bar{q})^{2}}\right)}{q^{-}-\bar{q}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{+}+\bar{p}^{4}}{\left.p^{4}+\bar{p}+\bar{p}\right)^{2}}\right)}{p^{+}+(p+\bar{p})^{2}}\right)\right]
\end{aligned}
$$

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

Pentagon integral is reduced to sum of 5 box integrals:

$$
\begin{aligned}
& \left.\mathbf{S}=\frac{i}{16 \pi^{2}} \frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}\left(q+\bar{q}^{-}\right)^{2}}\left[-\frac{2 i \pi}{\epsilon}+\sqrt{\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+} \bar{p}^{2}}\right) \ln \left(\frac{q^{-} \bar{q}^{2}}{\sigma^{-} q^{2}}\right.}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\bar{p}^{+} p^{+} \bar{q}^{-} q^{-} \mu^{4}}\right)+3 \pi^{2}\right] \\
& \mathbf{G}_{\mathbf{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+\right.
\end{aligned}
$$

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

Pentagon integral is reduced to sum of 5 box integrals:

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

Matching contribution in EFT_{2}

Finite term
Pentagon integral is reduced to sum of 5 box integrals:

$$
\mathbf{G}_{\mathrm{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-\bar{q}}-(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}\right)+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right)+
$$

$$
\left.+\frac{2 \pi i Q^{2}}{p^{+}+\bar{p}+(p+\bar{p})^{2}-q^{-}-\overline{q^{-}}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}-(q+\bar{q})^{2}}\right)}{q^{-\bar{q}}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+}+p^{4}(p+\bar{p})^{2}}\right)}{p^{+\bar{p}}(p+\bar{p})^{2}}\right)\right]
$$

zero-bin integral is scaleless: $\quad G_{s}=0$

Spectator-Spectator topology

Matching contribution in EFT_{2}

Finite term
Pentagon integral is reduced to sum of 5 box integrals:

$$
\frac{i}{16 \pi^{2}} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q-\bar{q}(q+\bar{q})}\right)}{q^{-\bar{q}}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+}+\bar{p}+(p+\bar{p})^{2}}\right)}{p^{+} \overline{p^{+}}(p+\bar{p})^{2}}\right)+\mathcal{O}\left(\epsilon, \frac{1}{\lambda^{2}}\right)
$$

$$
\mathbf{S}=\frac{i}{16 \pi^{2}} \frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}\left(q+\bar{q}^{-}\right)^{2}}\left[-\frac{2 i \pi}{\epsilon}+\ln \left(\frac{\bar{p}^{+} p^{2}}{p^{+} \bar{p}^{2}}\right) \ln \left(\frac{q^{-} \bar{q}^{2}}{\bar{q}^{-} q^{2}}\right)+i \pi \ln \left(\frac{\bar{p}^{2} p^{2} \bar{q}^{2} q^{2}}{\bar{p}^{+} p^{+} \bar{q}^{-} q^{-} \mu^{4}}\right)+3 \pi^{2}\right]
$$

$$
\mathbf{G}_{\mathrm{n}}=\frac{i}{16 \pi^{2}}\left[\frac{Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2} q^{-} \bar{q}^{-}(q+q)^{2}}\left(\frac{2 \pi i}{\epsilon}-2 \pi^{2}+2 \pi i \ln \left(\frac{\mu^{2}}{Q^{2}}\right)\right) \mathbf{+}\right.
$$

$$
\left.\boldsymbol{+} \frac{2 \pi i Q^{2}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}-q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\left(\frac{\ln \left(\frac{Q^{4}}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}\right)}{q^{-} \bar{q}^{-}(q+\bar{q})^{2}}-\frac{\ln \left(\frac{Q^{4}}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)}{p^{+} \bar{p}^{+}(p+\bar{p})^{2}}\right)\right]
$$

$$
\Delta C_{2}=\left(I_{5}-S-G+G_{5}\right) / \text { Tree }=0
$$

Spectator-Spectator topology

$\mathrm{EFT}_{1} \neq \mathrm{EFT}_{2}$

EFT,

EFT_{2}

Spectator-Spectator topology

$\mathrm{EFT}_{1} \neq \mathrm{EFT}_{2}$

EFT,

$$
\Delta C_{2}=\left(\mathrm{I}_{5}-\mathrm{S}\right) / \text { Tree }=\mathrm{I} / \varepsilon_{u v}+\mathrm{I} / \varepsilon_{\mathrm{IR}}
$$

EFT_{2}

Spectator-Spectator topology

$\mathrm{EFT}_{1} \neq \mathrm{EFT}_{2}$

EFTI

$$
\Delta C_{2}=\left(I_{5}-S\right) / \text { Tree }=I / \varepsilon_{u v}+I / \varepsilon_{I R}
$$

EFT_{2}

$$
\Delta C_{2}=\left(I_{5}-S-G+G_{s}\right) / \text { Tree }=0
$$

Status of the calculation

gives 0
(both theories)

gives 0 in EFT_{2} but not in EFT,

$$
<\gamma \gamma| |\left|q \bar{q}>=\mathrm{C}_{2}<\gamma \gamma\right| \mathrm{O}_{2} \mid q \bar{q}>\xrightarrow{\mathrm{EFT}_{1} \mathrm{C}_{2}=\mathrm{C}_{2}+0+1 / \varepsilon u v+\mid / \varepsilon_{\mid R}}
$$

Status of the calculation

$$
<\gamma Y| |\left|q \bar{q}>=\mathrm{C}_{2}<\gamma \mathrm{YY}\right| \mathrm{O}_{2} \mid \mathrm{q} \overline{\mathrm{q}}>\longrightarrow \mathrm{EFT}_{2} \mathrm{C}_{2}=\mathrm{C}_{2}+0+\mathrm{I} / \varepsilon \mathrm{uv}+\mathrm{I} / \varepsilon_{1 R}
$$

EFT_{2} is an Effective Theory with Glauber modes, and it is the Right one!

Status of the calculation

$$
\mathrm{EFT}_{2} \quad \mathrm{C}_{2}=\mathrm{C}_{2}+0+0
$$

EFT_{2} is an Effective Theory with Glauber modes, and it is the Right one!

Matching calculation

Summary of the matching calculation

Matching calculation

Summary of the matching calculation

- In active-active and spectator-active topologies putting the Glauber mode or not into SCET doesn't make any difference
- In spectator-spectator topology, the presence of Glauber mode makes a non-trivial contribution to the Drell-Yan amplitude and only including Glaubers into effective theory we get the right answer for the matching coefficient C_{2}
- Our results are in no conflict with Collins, Soper, Sterman's "pinch" analysis of Drell-Yan loop integrals
- Taking into account the zero-bins, or the overlaps between the different modes was crucial for our analysis

Conclusions

- We completed a one-loop matching calculation for the operator O_{2} with special partonic final states
- For consistency of Effective Theory to get the right matching coefficient, SCET has to be expanded by Glauber modes
- Understanding the cancellation of Glauber gluons in the Drell-Yan cross-section using Effective Theory hasn't been achieved(yet)

backup

Coleman Norton Theorem

- Because of the scaling of the Glauber mode it is always off-shell
- According to Coleman-Norton theorem the infrared poles can come only from on-shell propagating modes
- As we review below the apparent contradiction is resolved by a trivial observation that the amount of off-shellness of the Glauber mode is infinitesimally small

Coleman Norton Theorem

$$
\int \prod_{i} d \alpha_{i} \delta\left(\sum_{i} \alpha_{i}-I\right)\left(\sum_{i} \alpha_{j}\left(q_{j}^{2}-m_{j}^{2}\right)\right)^{-1}
$$

Coleman Norton Theorem

$$
\int \prod_{i} d \alpha_{i} \delta\left(\sum_{i} \alpha_{i}-I\right)\left(\sum_{i} \alpha_{j}\left(q_{i}^{2}-m_{j}^{2}\right)\right)^{-1}
$$

Infrared singularities come from conditions known as Landau Equations:
$q_{j}^{2}-m_{j}^{2}=0$ or $\alpha_{j}=0$ and $\quad \sum_{j} \alpha_{j} q_{j}=0 \quad q_{j}^{*}=q_{j} \quad \alpha_{j} \geq 0$

Coleman Norton Theorem

$$
\int \prod_{i} d \alpha_{i} \delta\left(\sum_{i} \alpha_{i}-I\right)\left(\sum_{i} \alpha_{j}\left(q_{i}^{2}-m_{j}^{2}\right)\right)^{-1}
$$

Infrared singularities come from conditions known as Landau Equations:
$q_{j}{ }^{2}-m_{j}^{2}=0$ or $\alpha_{j}=0$ and $\quad \sum_{j} \alpha_{j} q_{j}=0 \quad q_{j}^{*}=q_{j} \quad \alpha_{j} \geq 0$

Coleman Norton `65
$\Delta X_{j}=\alpha_{j} q_{j}$

Coleman Norton Theorem

$$
\int \prod_{i} d \alpha_{i} \delta\left(\sum_{i} \alpha_{i}-I\right)\left(\sum_{i} \alpha_{j}\left(q_{i}^{2}-m_{j}^{2}\right)\right)^{-1}
$$

Infrared singularities come from conditions known as Landau Equations:
$q_{j}^{2}-m_{j}^{2}=0$ or $\alpha_{j}=0$ and $\quad \sum_{j} \alpha_{j} q_{j}=0 \quad q_{j}^{*}=q_{j} \quad \alpha_{j} \geq 0$

Coleman Norton `65
$\Delta X_{j}=\alpha_{j} q_{j}$

Example:Triangle Graph

$$
\begin{aligned}
& \mathbf{I}_{3}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}(l-\bar{q})^{2}} \\
& \alpha_{1} l^{\mu}+\alpha_{2}(l+p)^{\mu}+\alpha_{3}(l-\bar{q})^{\mu}=0 \\
& \alpha_{1} l^{2}=0 \quad \alpha_{2}(l+p)^{2}=0 \quad \alpha_{3}(l-\bar{q})^{2}=0
\end{aligned}
$$

Example:Triangle Graph

$$
\begin{gathered}
\mathbf{I}_{3}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}(l-\bar{q})^{2}} \\
\alpha_{1} l^{\mu}+\alpha_{2}(l+p)^{\mu}+\alpha_{3}(l-\bar{q})^{\mu}=0 \\
\alpha_{1} l^{2}=0 \quad \alpha_{2}(l+p)^{2}=0 \quad \alpha_{3}(l-\bar{q})^{2}=0
\end{gathered}
$$

Solution to Landau's Equations:

Collinear: $\quad l=\xi p \quad \alpha_{3}=0$
Soft: $\quad l^{\mu}=0 \quad \alpha_{2}=\alpha_{3}=0$
Glauber: $\quad l^{\mu}=0 \quad \alpha_{2}=\alpha_{3}=0$

Example:Triangle Graph

$$
\mathrm{I}_{3}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}(l-\bar{q})^{2}} \quad \begin{gathered}
\text { Landau Equations do not } \\
\text { distinguish between Glauber } \\
\text { and Soft regions. More analysis }
\end{gathered}
$$

$$
\alpha_{1} l^{\mu}+\alpha_{2}(l+p)^{\mu}+\alpha_{3}(l-\bar{q})^{\mu}=0
$$

$$
\alpha_{1} l^{2}=0 \quad \alpha_{2}(l+p)^{2}=0 \quad \alpha_{3}(l-\bar{q})^{2}=0
$$

Solution to Landau's Equations:

Collinear: $\quad l=\xi p \quad \alpha_{3}=0$
Soft: $\quad l^{\mu}=0 \quad \alpha_{2}=\alpha_{3}=0$
Glauber: $\quad l^{\mu}=0 \quad \alpha_{2}=\alpha_{3}=0$

Pinches

Pole structure

Pinches

