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-Factorization and resummation formula:



Higgs Boson

• The Higgs boson is the last missing piece of the SM.

• Search strategy complicated by decay properties:

FIG. 4: Select Standard Model Higgs boson branching ratios as a function of mass, MH [22]. The
Higgs prefers to decay to the most massive possible final state. The ratio of fermionic branching

ratios are proportional to fermion masses squared, modulo color factors and radiative corrections.

2. A brief word on statistics – the simple view

Now that we understand the basics of Higgs decay, and production in electron-positron
collisions, we should take a moment to consider statistics. The reason we must resort to
statistics is that particle detectors are imperfect instruments. It is impossible to precisely
measure the energy of all outgoing particles in every collision. The calorimeters are sampling
devices, which means they don’t capture all the energy; rather they’re calibrated to give
an accurate central value at large statistics, with some Gaussian uncertainty about the
mean for any single event. Excess energy can also appear, due to cosmic rays, beam–
gas or beam secondary interactions. Quark final states hadronize, resulting in the true
final state in the detector (a jet) being far more complicated and difficult even to identify
uniquely. The electronics can suffer hiccups, and software always has bugs, leading to
imperfect analysis. Thus, we would never see two or three events at precisely the Higgs
mass of, say, 122.6288... GeV, and pop the champagne. Rather, we’ll get a distribution of
masses and have to identify the central value and its associated uncertainty.

In any experiment, event counts are quantum rolls of the dice. For a sufficient number
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• Typically there are 
three search regions:

1 Introduction

The Standard Model of elementary particle physics (SM) has been highly successful in ex-
plaining all experimental data [1]. With the recent discovery of the top quark [2], the Higgs
boson is the only remaining missing piece, albeit an essential one. Within the SM, it provides
the mechanism to dynamically break the electroweak symmetry and gives masses to the elec-
troweak gauge bosons. The same mechanism gives masses to the spin 1/2 fermions such as the
top quark and the electron. The Higgs is therefore essential for our understanding of mass.
Furthermore, the theoretical structure of the Higgs sector in the SM is the main motivation
for speculations on physics beyond the SM, e.g. supersymmetry or technicolour. The discovery
of the Higgs boson and the determination of its couplings could possibly provide an essential
clue to this new realm. The search for the Higgs boson is therefore considered to be the most
important task for future collider physics.

With the present energy upgrade of the large electron positron collider, LEP2, at CERN,
the Higgs boson can be discovered for MH ≤ 98 GeV [3] (

√
s = 192 GeV). For larger masses the

Large Hadron Collider (LHC) to be built at CERN, is the most promising discovery machine.
There, the Higgs boson search is usually split into three Higgs mass regions [4, 5, 6]

(i) 90GeV < MH < 130 GeV,

(ii) 130GeV < MH < 2 · MZ0 , (1)

(iii) 2 · MZ0 < MH < 800 GeV.

For the mass regions (i) and (iii), Higgs detection with large significance is possible by the
observation of narrow mass peaks using the decays H → γγ and H → Z0Z0 → 2"+2"− re-
spectively [4, 5, 6]. For most of the mass region (ii) previous experimental studies, assuming
excellent energy and momentum measurements of electrons and muons, have obtained promis-
ing mass peaks from the channel H → Z0Z∗0 → 2"+2"−, despite the low branching ratios
[4, 5, 6]. However, the mass range between ≈ 155–180 GeV remains 1 difficult to detect be-
cause the Higgs decays almost exclusively to a pair of on shell W±’s [4, 5, 6, 7, 8]. Consequently,
a large integrated luminosity of about 100 fb−1 is required for the Higgs detection using this
four charged lepton signature.

In this letter we focus exclusively on the hitherto difficult mass region (ii) with

155 GeV < MH < 180 GeV. (2)

We show that despite the absence of a narrow mass peak the decay

H → W+W− → ("+ν)("
′−ν̄), ", "′ = e, µ, τ(→ "νν̄), (3)

provides a straight forward discovery channel, especially in this mass range.

1

• Search strategies vary in different mass regions.



Higgs Low pT Region
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I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (3)

L(0)
SCET = L(0)

coll. + L(0)
soft (4)

phc ∼ pc + ps ∼ Q(η2, 1, η) + Q(η, η, η) ∼ Q(η, 1, η) (5)

p2
hc ∼ Q2η # p2

c , p
2
s (6)

• We restrict the transverse momentum of the Higgs:
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theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h
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d2k⊥

h
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(2π)2
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∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by
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Restrict pT of Higgs

• Such pT restrictions can play an important role in Higgs 
searches.
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FIG. 2: The leading order diagrams in QCD that contribute to Higgs production with non-zero
pT .

as p3, and the outgoing Higgs momentum as ph. We define the light-cone vectors n and n̄

through

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (7)

The momenta of the initial hadrons and the Higgs boson are given by

pµ1 =
Q

2
nµ, pµ2 =

Q

2
n̄µ,

pµh =

(√
p2T +m2

h coshY, !pT ,
√
p2T +m2

h sinhY

)
, (8)

where Y = 1/2 ln(n̄ · ph/n · ph) is the rapidity of the Higgs boson. The partons entering the

hard-scattering process have momenta and virtualities given by

p̂1 = x1p1 +O(ΛQCD), p̂2 = x2p2 +O(ΛQCD), p̂21,2 ∼ O(Λ2
QCD), (9)

where x1,2 are the usual Bjorken momentum fractions.

Several distinct kinematic regions contribute to production of a Higgs boson at low trans-

verse momentum. In the first, the Higgs recoils against a n-collinear gluon with the following

momentum in light-cone coordinates:

p3 ∼ (n · ph, n̄ · ph, ph⊥) ∼ mh(p
2
T/m

2
h, 1, pT/mh). (10)

This corresponds to a Higgs boson produced at high rapidity and low transverse momentum.

A similar region exists with the Higgs recoiling against an n̄-collinear gluon with scaling

p3 ∼ mh(1, p2T/m
2
h, pT/mh). Finally, the Higgs boson may recoil against a gluon with an

“soft” momentum p3 ∼ (pT , pT , pT ). This corresponds to the production of a Higgs at central

rapidity and low transverse momentum. Since the final-state gluons in the low-momentum

region are restricted to be either soft or collinear to the initial partons, large logarithms

of the form ln (mh/pT ) appear in the perturbative expansion and must be resummed to

all orders. The n-collinear, n̄-collinear and soft gluon modes will be used to construct the

effective theory that facilitates this resummation.

For future use we reproduce here the differential and total cross sections for the gluon-

gluon scattering process. The hadronic cross section can be expressed as a convolution of

:
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I. INTRODUCTION

The Higgs boson is the last undiscovered particle of the Standard Model (SM), and

its discovery is a major goal of both the Tevatron and the Large Hadron Collider (LHC)

physics programs. If a scalar particle is discovered at either collider, the measurement of

its properties will be crucial to determine whether the particle found is the Standard Model

Higgs boson, or whether it hints at physics beyond the SM. The theoretical community has

devoted significant effort to understanding precisely the production cross section and decay

widths of the SM Higgs particle in order to facilitate such studies, as reviewed recently in

Ref. [1]. The dominant production mode at both the Tevatron and the LHC is the partonic

mechanism gg → H proceeding through a top-quark loop [2–6]. The perturbative QCD

corrections are known through next-to-leading order in full QCD [7, 8], while the corrections

in themt → ∞ limit are known through next-to-leading order [9] and next-to-next-to-leading

order [10–12]. Resummation of logarithmically-enhanced threshold corrections to the cross

section has been studied [13–16]. The inclusion of such theoretical calculations is crucial for

experimental searches for the Higgs boson, as they increase the predicted cross section in

the SM by a factor of two at the LHC and by more than a factor of three at the Tevatron.

The study of differential distributions of the Higgs boson is also needed in experimental

analyses. For example, for a SM Higgs in the mass range 130 GeV ≤ mh ≤ 160 GeV,

one of the most promising discovery modes is through the partonic process gg → h →
W+W− → !+ν!−ν̄. Since the final state contains two neutrinos, reconstruction of the Higgs

mass peak is not possible. An understanding of the kinematic distributions for both signal

and backgrounds is needed in this search channel. The NNLO differential distributions in

the mt → ∞ effective theory were obtained in Refs. [17–20], and detailed studies of the

effects of experimental cuts on Higgs boson cross sections have been performed [21–23].

However, a large reducible background comes from pp → tt̄ → bW+b̄W− → !+ν!−v̄ +

jets. Such backgrounds are brought under control with a series of cuts which include a

jet veto so that any process involving a jet with high transverse momentum, taken to be

roughly pT > 20 GeV [24–26], is rejected. Such a cut selects Higgs boson with primarily low

transverse momentum, and therefore a proper implementation of such jet vetoes requires

a good understanding of the Higgs differential distributions at low pT where resummation

of large pT/mh logarithms is necessary. The study of the low-transverse momentum region
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• Large backgrounds from:
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• Background elimination requires jet vetoes:
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veto events with jets of

• For the Higgs mass range:

• Higgs search channel:

LHC 14 TeV Accepted event fraction
reaction pp → X σ × BR2 [pb] cut 1-3 cut 4-6 cut 7

pp → H → W+W− (mH = 170 GeV) 1.24 0.21 0.18 0.080
pp → W+W− 7.4 0.14 0.055 0.039

pp → tt̄ (mt = 175 GeV) 62.0 0.17 0.070 0.001
pp → Wtb (mt = 175 GeV) ≈6 0.17 0.092 0.013

pp → ZW → "+"−"ν 0.86 0.23 0.054 0.026
pp → ZZ → 4–leptons 1.05 0.13 0.016 0.007

pp → Z → τ+τ− 1400 0.007 0.0004 0.00009
pp → Z → e+e−, µ+µ− 2800 0.22 0.0004 0.00012

Table 1: The expected signal and background event rates using the cross section estimates
with the CTEQ2L structure functions and with the first set of selection criteria. In all cases
only the leptonic W branching ratios are simulated (W → "±ν with "± being electrons, muons
or τ). For the production of ZZ events, the cross section is obtained including the Z decays
into charged leptons and neutrinos. For the production of WZ and for the single Z production
only the Z decays to charged leptons including the subsequent τ decays are simulated.

energy carried by the two neutrinos is thus approximated with Eνν =
√

m2
"" + p2

t ("").
With this approximation a broad mass distribution, with a mean value in agreement
with the simulated Higgs mass and a large rms of about 55 GeV, is obtained.

11. The opening angle θ∗ between the lepton with the larger pt, boosted to the dilepton
rest frame and the momentum vector of the dilepton system should fulfill the condition
0. < cos θ∗"+"− < 0.3.

Condition eight exploits the smaller boost of the candidate events, originating from the
gluon–gluon fusion process. A large fraction of the continuum W+W− background originates
from valence–quark sea–antiquark scattering with a relatively large momentum imbalance,
resulting in a boosted W+W− system, as shown in figure 1.

Criterion nine makes use of the spin correlation between the W+W− pair. The potential
discriminating power of this correlation in the Higgs search has previously been pointed out
by C. A. Nelson [16]. W pairs originating from the decay of a scalar have to have opposite
spin orientation. Due the V–A structure in the W decay, the left handed e− (right handed e+)
is emitted along the W− (W+) spin. As a result, one of the two charged leptons is emitted
along the momentum direction of the two W ’s while the other one is emitted in the opposite
direction. For the considered Higgs mass range, a small opening angle between the two charged
leptons can be expected for signal events while the backgrounds will show an almost symmetric
distribution. The discriminating power of this criterion is shown in figure 2. As can be seen
the leptons originating from Higgs decays have a relatively small opening angle while the ones
coming from continuum W+W− and tt̄ events show essentially a symmetric distribution.

The estimated invariant mass of the "+"−νν system, shown in figure 3, is unfortunately
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Jet Veto enhances signal to 
background ratio
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Low pT Region

• Resummation of large logarithms required.

Large Logarithms spoil 
perturbative convergence

• Resummation has been studied in great detail in the Collins-
Soper-Sterman formalism.

!!"#$%%& '(

) *+,-#!" ##$% .#/+,#0123 4,56,4#78-/96-4#:95;,#:8;956/+<4#&'(%)*!"
)+

9/#,97+#85=,5>

5,4?<<9/68-

*+67+#4086:4#/+,#78-@,5;,-7,#8A#/+,#4,56,4#*+,-

) A85/?-9/,:B.#/+,4,#:8;956/+<4#79-#C,#,-./00-1 /8#9::#85=,54#6-#
0123.#/8#;,-,59/,#9#!?=9D8@ A85<#A97/85>

E *+67+#5,;?:9/,4#/+,#FG#46-;?:956/B#9/#!" 2$3

) /+,#,AA,7/#8A#/+,#A85<#A97/85#64#HI?4/#9C8?/J#@646C:,#6-#/+,#
HK,@9/58-J#=9/9#

• The schematic perturbative series for the pT 
distribution for  

2

Contents

I. Introduction 2

II. PVDIS Phenomenology 7

III. Isolating Higher Twist Quark Correlations 9

A. Isospin decomposition of structure functions 10

B. Isolating twist-four contribution to the asymmetry 11

C. Equality of Rγ and RγZ at twist-four 14

IV. Sensitivity Analysis to Higher Twist Effects 15

V. Charge Symmetry Violation 17

A. Callan-Gross relation: F du
2 = 2xF du

1 17

References 20

pp→ h + X (1)

αs

π
(2)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (3)

L(0)
SCET = L(0)

coll. + L(0)
soft (4)

phc ∼ pc + ps ∼ Q(η2, 1, η) + Q(η, η, η) ∼ Q(η, 1, η) (5)

p2
hc ∼ Q2η # p2

c , p
2
s (6)

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Ladinsky, Yuan; Fai, Zhang; 
Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, .... )



Collins-Soper-Sterman Formalism



CSS Formalism

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
AB→CX

dQ2 dy dQ2
T

=
1

(2π)2

∫

d2b ei !QT ·!b WAB→CX(b, Q, xA, xB)

=
∫ db

2π
J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
T ) lnm(Q2/Q2

T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)

7

.

• The transverse momentum distribution in the CSS 
formalism is schematically given by:

boson production. We compare the predicted QT distributions for Higgs boson production

at different masses. The peak of the distribution shifts to greater QT as mh grows, in

approximately linear fashion, and the distribution broadens somewhat. The mean value

< QT > grows from about 35 GeV at mh = MZ to about 54 GeV at mh = 200 GeV, and

the root-mean-square grows from about 59 GeV to about 87 GeV. For Z production, we

find < QT >= 25 GeV and < Q2
T >1/2= 38 GeV. The harder QT spectrum suggests that

the signal to background ratio can be enhanced if Higgs bosons are selected with large QT .

Choices of variable parameters are made in obtaining our results, and we examine the

sensitivity of the results to these choices, including the renormalization/factorization scale

µ and the non-perturbative input. Scale dependence is the most important source of uncer-

tainty. It can shift the position of the peak by about 1 GeV, with corresponding changes in

the normalization of the distribution above and below the position of the peak. The value

of dσ/dydQT at the peak position is shifted by 4 to 5%. Changes in the parameters of the

non-perturbative input produce effects that at most 1 to 2% depending on the size of the

power corrections we introduce. In the formulation we use to describe the non-perturbative

region, there is essentially no effect on the behavior of differential cross section at large

QT . In comparison with prior work, we note that the locations of the maxima in the dis-

tributions dσ/dydQT occur at slightly larger values of QT in our case, and the distributions

themselves differ as a function of QT above the location of the maximum. The differences

arise from the different treatment of the non-perturbative input. In our approach, the as-

sumed parametrization of non-perturbative effects has the desirable property that it does

not affect the physics in the perturbative region b < 0.5 GeV.

Conclusions are summarized in Sec. VI.

II. ALL-ORDERS RESUMMED QT DISTRIBUTION

We consider the inclusive hadronic reaction in which a color neutral heavy boson of

invariant mass Q is produced:

A(PA) + B(PB) → C(Q) + X, (1)

with C = γ∗, W±, Z, or a Higgs boson in the limit in which the top quark mass mt " Q/2.

The square of the total center-of-mass energy of the collision is S. At the LHC,
√

S = 14 TeV.
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CSS Formalism

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
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dQ2 dy dQ2
T

=
1

(2π)2

∫
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=
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2π
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where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
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T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)
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Focus of this talk

• Obtained from fixed 
order  calculation.

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
AB→CX

dQ2 dy dQ2
T

=
1

(2π)2

∫

d2b ei !QT ·!b WAB→CX(b, Q, xA, xB)

=
∫ db

2π
J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
T ) lnm(Q2/Q2

T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)

7



CSS Formalism
• The CSS factorization and resummation formula takes the 
form:
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B. Comparison with CSS approach

The classic QCD analysis of resummation of low transverse momentum logarithms ex-

presses the cross section in the low pT region as [31]

d2σ

dpT dY
= σ0

∫
d2b⊥
(2π)2

e−i!pT ·!b⊥
∑

a,b

[
Ca ⊗ fa/P

]
(xA, b0/b⊥)

[
Cb ⊗ fb/P

]
(xB, b0/b⊥)

× exp

{∫ Q̂2

b20/b
2
⊥

dµ2

µ2

[
ln
Q̂2

µ2
A(αs(µ

2)) +B(αs(µ
2))

]}
. (55)

The sum is over parton species labeled by a, b, while xA,B denote the equivalent parton

fractions xA,B = e±Ymh/Q respectively. The functions A, B, and C have perturbative

expansions in αs, while b0 is an arbitrary constant chosen for computational convenience.

One significant difference between this result and our approach outlined in the previous

section is the appearance of the Landau pole of the strong coupling constant when µ2 = 0

in the exponent. To deal with this singularity, several modifications of this formula are

employed, including a deformation of the b⊥ integration contour [36, 75, 76] and the intro-

duction of a phenomenological model to cut off the b⊥ → ∞ region [77]. In our approach

the most natural choice for the scale which controls the lower limit of the RG evolution

is µL = pT . This can also be understood by noting that the perturbative function Gij is

independent of the impact parameter, in both the impact-parameter and momentum-space

formulations of the factorization theorem, and depends on pT and µ and no other dimen-

sionful scales. Furthermore from the structure of the factorization theorem, we see that the

logarithms of mh/pT are summed by the RG evolution of the hard coefficient H(x1, x2Q2, µ)

which multiplies the function Gij and also has no reference to an impact parameter. In

the effective theory, non-perturbative effects such as those indicated by the appearance of

the Landau pole are encoded in operators suppressed by ΛQCD/pT . When pT ∼ ΛQCD,

the expansion in this parameter breaks down, and a model of Gij fit to data can be used

analogous to the standard approach. However, no reference to a non-pertubative function

is needed above ΛQCD. Previous comparisons of b-space and momentums-space resumma-

tion formalisms have indicated numerical agreement between the obtained results down to

pT ∼ few GeV [78]. At this stage, power-suppressed operators presumably give important

contributions. The use of SCET allows such effects to be studied in a systematic way. The

avoidance of the Landau singularity also simplifies the matching of the resummed result to

the fixed-order expression. In the usual approach, a large cancellation between the resummed

component and the fixed-order QCD contribution occurs, leading to potential instabilities

in the matched distribution. This cancellation typically occurs numerically because of the

introduction of a non-perturbative model for the large b⊥ region. Since it can be arranged

analytically if the b⊥ integrals can be done, avoidance of the Landau pole is useful for this

purpose also (we note that the matching to fixed-order QCD results can be made smoother

Sudakov Factor

Coefficients with well defined 
perturbative expansions

Perturbatively 
calculablePDF
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• The integration over the impact parameter introduces a Landau
   pole. 
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expansions in αs, while b0 is an arbitrary constant chosen for computational convenience.

One significant difference between this result and our approach outlined in the previous

section is the appearance of the Landau pole of the strong coupling constant when µ2 = 0

in the exponent. To deal with this singularity, several modifications of this formula are

employed, including a deformation of the b⊥ integration contour [36, 75, 76] and the intro-

duction of a phenomenological model to cut off the b⊥ → ∞ region [77]. In our approach

the most natural choice for the scale which controls the lower limit of the RG evolution

is µL = pT . This can also be understood by noting that the perturbative function Gij is
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formulations of the factorization theorem, and depends on pT and µ and no other dimen-

sionful scales. Furthermore from the structure of the factorization theorem, we see that the

logarithms of mh/pT are summed by the RG evolution of the hard coefficient H(x1, x2Q2, µ)

which multiplies the function Gij and also has no reference to an impact parameter. In

the effective theory, non-perturbative effects such as those indicated by the appearance of

the Landau pole are encoded in operators suppressed by ΛQCD/pT . When pT ∼ ΛQCD,

the expansion in this parameter breaks down, and a model of Gij fit to data can be used

analogous to the standard approach. However, no reference to a non-pertubative function

is needed above ΛQCD. Previous comparisons of b-space and momentums-space resumma-

tion formalisms have indicated numerical agreement between the obtained results down to

pT ∼ few GeV [78]. At this stage, power-suppressed operators presumably give important

contributions. The use of SCET allows such effects to be studied in a systematic way. The

avoidance of the Landau singularity also simplifies the matching of the resummed result to

the fixed-order expression. In the usual approach, a large cancellation between the resummed

component and the fixed-order QCD contribution occurs, leading to potential instabilities

in the matched distribution. This cancellation typically occurs numerically because of the

introduction of a non-perturbative model for the large b⊥ region. Since it can be arranged

analytically if the b⊥ integrals can be done, avoidance of the Landau pole is useful for this

purpose also (we note that the matching to fixed-order QCD results can be made smoother

Landau Pole

• Landau pole present even for perturbative pT values. 

• Treatment of Landau pole is prescription dependent.
(Collins, Soper, Sterma; Kulesza, Laenen,Vogelsang; Qiu, Zhang,... )
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EFT framework 
• The low transverse momentum distribution is affected by 
physics at the scales:

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• The most singular pT emissions recoiling against the Higgs 
are soft and collinear emissions whose dynamics may be 
addressed in Soft-Collinear Effective Theory (SCET). 

• Hierarchy of scales suggests EFT approach with well defined 
power counting.

• Resummation has also been previously studied in SCET. 
   (Idilbi, Ji, Juan; Gao, Li, Liu)
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parton distribution functions and partonic cross sections:

σPP→h =

∫
dx1dx2fg/P (x1, µ)fg/P (x1, µ)σ̂gg→h(ŝ, t̂, û, µ), (11)

where ŝ, t̂, and û are the usual partonic Mandelstam variables. For production of the Higgs

with non-zero pT , the differential partonic cross section is given by [68]

dσ̂

dt̂
=

π

384v2

(αs

π

)3
{
m8

h + ŝ4 + t̂4 + û4

ŝt̂û

}
. (12)

The total partonic cross section for gg → h through next-to-leading order in QCD pertur-

bation theory is [7, 9]

σ̂ =
π

576v2

(αs

π

)2
{
δ(1− z) +

αs

π

[
δ(1− z)

(
π2 +

11

2

)
− 11

2
(1− z)3

+ 6
(
1 + z4 + (1− z)4

)( ln(1− z)

1− z

)

+

}
, (13)

where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of effective theories

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (14)

which factorize the physics associated with the different scales Q ∼ mh $ pT $ ΛQCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is sufficiently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) → QCD(nf = 5) to obtain an effective coupling of the Higgs

boson to gluons. The cross sections obtained using this effective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.

The soft-collinear decoupling property of the leading order SCETpT Lagrangian also leads

to a factorization of the soft and collinear sectors, which simplifies calculations of the cross

section in the low pT region. Finally, the matching to SCETΛQCD expresses the cross section

in terms of the standard parton distribution functions. We describe in this section the details

of each stage in the matching in QCD(nf = 5) → SCETpT → SCETΛQCD .

Top quark 
integrated out.

Matched onto 
SCET.

Soft-collinear 
factorization.

Matching onto 
PDFs.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.
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where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of effective theories

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (14)

which factorize the physics associated with the different scales Q ∼ mh $ pT $ ΛQCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is sufficiently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) → QCD(nf = 5) to obtain an effective coupling of the Higgs

boson to gluons. The cross sections obtained using this effective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.

The soft-collinear decoupling property of the leading order SCETpT Lagrangian also leads

to a factorization of the soft and collinear sectors, which simplifies calculations of the cross

section in the low pT region. Finally, the matching to SCETΛQCD expresses the cross section

in terms of the standard parton distribution functions. We describe in this section the details

of each stage in the matching in QCD(nf = 5) → SCETpT → SCETΛQCD .

Top quark 
integrated out.

Matched onto 
SCET.

Soft-collinear 
factorization.

Matching onto 
PDFs.

Newly defined objects describing 
soft and collinear pT emissions
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• Large logarithms are summed via RG equations in EFTs.

• Formulation is free of Landau poles.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

Integrating out the top
We are here

8

There have also been many other recent [41, 48–53, 53–57] developments in the application

of SCET to describe other processes at hadron colliders and is a promising avenue to pursue

in the LHC era.

Our paper is organized is follows. In Section II we review the calculation of Higgs produc-

tion through the gluon-fusion mechanism in perturbative QCD. We derive our factorization

formula in Section III. We discuss the factorization formula and compare to other results in

the literature in Section IV. In Section V we calculate the various quantities in fixed-order

perturbation theory, while Section VI is devoted to resummation of logarithms. We per-

form a series of consistency checks on our factorization formula including a comparison with

fixed-order perturbative QCD in Section VII. Finally, we conclude in Section VIII.

II. HIGGS PRODUCTION IN QCD

We begin by reviewing the gluon-initiated production of a Higgs boson in QCD. The

coupling of the Higgs boson to gluons arises primarily from a top-quark loop. For mh < 2mt,

we can integrate out the top quark to derive an effective coupling of the Higgs boson to

gluons [2, 5, 7, 9, 58]. The effective Lagrangian is given by

Lmt = CGGh
h

v
Ga

µ ν G
µ ν
a , CGGh =

αs

12π

{
1 +

11

4

αs

π
+O(α2

s)

}
, (5)

where CGGh, the Wilson coefficient in the MS scheme, is known through O(α4
s) [13, 59–62].

Calculations of the total cross section at higher orders in QCD perturbation theory using this

effective Lagrangian have been shown to reproduce the result of the full theory to percent-

level accuracy when mh < 2mt if the effective-theory cross section is normalized by the full

top-quark mass-dependent leading-order cross section [8, 63]. Additional corrections to the

transverse momentum spectrum of O(p2T/m
2
t ) are also present in the full theory. These affect

the low-pT region at the percent level, and have recently been studied in Refs. [64, 65]. An

effective field theory approach for studying such corrections at higher orders has recently

been developed [66, 67]. The scale µ at which the coupling constant is evaluated should be

chosen as µ ≈ mt to minimize logarithms that appear in the O(α3
s) expression for CGGh.

For notational ease we define

g2 c = −4CGGh (6)

and express later results using c.

The Higgs boson must recoil against at least one parton in order to have non-zero trans-

verse momentum. At leading-order in perturbative QCD, three partonic processes contribute

to Higgs production at non-zero pT : gg → hg, q(q̄)g → hq(q̄), and qq̄ → hg. We focus here

on the dominant process gg → hg. The diagrams contributing to this process are shown in

Fig. 2. We denote the incoming proton momenta as p1, p2, the outgoing parton momentum
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formula in Section III. We discuss the factorization formula and compare to other results in

the literature in Section IV. In Section V we calculate the various quantities in fixed-order

perturbation theory, while Section VI is devoted to resummation of logarithms. We per-

form a series of consistency checks on our factorization formula including a comparison with

fixed-order perturbative QCD in Section VII. Finally, we conclude in Section VIII.

II. HIGGS PRODUCTION IN QCD

We begin by reviewing the gluon-initiated production of a Higgs boson in QCD. The

coupling of the Higgs boson to gluons arises primarily from a top-quark loop. For mh < 2mt,

we can integrate out the top quark to derive an effective coupling of the Higgs boson to
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Lmt = CGGh
h

v
Ga

µ ν G
µ ν
a , CGGh =

αs

12π

{
1 +

11

4

αs

π
+O(α2

s)

}
, (5)

where CGGh, the Wilson coefficient in the MS scheme, is known through O(α4
s) [13, 59–62].

Calculations of the total cross section at higher orders in QCD perturbation theory using this

effective Lagrangian have been shown to reproduce the result of the full theory to percent-
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2
t ) are also present in the full theory. These affect

the low-pT region at the percent level, and have recently been studied in Refs. [64, 65]. An

effective field theory approach for studying such corrections at higher orders has recently

been developed [66, 67]. The scale µ at which the coupling constant is evaluated should be

chosen as µ ≈ mt to minimize logarithms that appear in the O(α3
s) expression for CGGh.

For notational ease we define

g2 c = −4CGGh (6)

and express later results using c.
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to Higgs production at non-zero pT : gg → hg, q(q̄)g → hq(q̄), and qq̄ → hg. We focus here

on the dominant process gg → hg. The diagrams contributing to this process are shown in

Fig. 2. We denote the incoming proton momenta as p1, p2, the outgoing parton momentum

• Leading term in the Higgs effective interaction with Gluons:

Two loop result for 
Wilson coefficient.

(Chetyrkin, Kniehl, Kuhn, Schroder, Steinhauser, Sturm)
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A. QCD to SCETpT

As already mentioned, the perturbative expansion in QCD for the transverse momentum

spectrum of the Higgs contains logarithms of mh/pT . In the low transverse momentum

region ΛQCD ! pT ! mh, these logarithms become large and must be resummed to all

orders in perturbation theory. In the effective theory formulation, this is done by matching

QCD onto the effective theory SCETpT , which describes the dynamics of the degrees of

freedom recoiling against the Higgs, and solving the RG equations of the effective theory

operators. The effective theory SCETpT is formulated in terms of collinear and soft modes

with momentum scalings

pn ∼ mh(η
2, 1, η), pn̄ ∼ mh(1, η

2, η), ps ∼ mh(η, η, η), η ∼ pT
mh

,

(15)

where pn, pn̄, and ps denote typical momenta for the n-collinear, n̄-collinear and soft modes

respectively. The effective theory has a well defined power counting in the parameter η

and has distinct quark and gluon fields for each of these modes. The gluon fields Aµ
n,p̃n(x),

Aµ
n̄,p̃n̄(x), and Aµ

s,q̃(x) destroy n-collinear, n̄-collinear, and soft gluons respectively. The pres-

ence of distinct collinear and soft gluons requires the theory to be invariant under collinear

and soft gauge transformations [38, 69]. The momenta of the effective theory modes are

separated into label p̃ and residual k parts

pµ = p̃µ + kµ, p̃µ ∼ mh(1, η), kµ ∼ mhη
2. (16)

Derivative operators are similarly separated into label and residual operators so that, for

example, a derivative acting on the n-collinear field takes the form

i∂µ → nµ

2
P̄ + Pµ

⊥ + i∂µ, (17)

such that the label operators act on the label momentum subscripts

P̄nA
µ
n,p̃n(x) = n̄ · p̃Aµ

n,p̃n(x), Pν
⊥A

µ
n,p̃n(x) = p̃ν⊥A

µ
n,p̃n(x), (18)

and the residual derivative operator acts on the residual co-ordinate dependence xµ. We note

that such a field with label momenta can be written explicitly as a Fourier transform of a

standard quantum field. As an example, a field with no dependence on residual coordinates

can be expressed as

Xp̃n(0) =

∫
dy

4π
e−iyp̃n/2 X(y). (19)

As already discussed, after integrating out the top quark, the gg → h process is mediated

by the effective QCD operator

OQCD = g2 h Tr
[
GµνG

µν
]
= −4v

c
Lmt , (20)
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FIG. 2: The leading order diagrams in QCD that contribute to Higgs production with non-zero
pT .

as p3, and the outgoing Higgs momentum as ph. We define the light-cone vectors n and n̄

through

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (7)

The momenta of the initial hadrons and the Higgs boson are given by

pµ1 =
Q

2
nµ, pµ2 =

Q

2
n̄µ,

pµh =

(√
p2T +m2

h coshY, !pT ,
√
p2T +m2

h sinhY

)
, (8)

where Y = 1/2 ln(n̄ · ph/n · ph) is the rapidity of the Higgs boson. The partons entering the

hard-scattering process have momenta and virtualities given by

p̂1 = x1p1 +O(ΛQCD), p̂2 = x2p2 +O(ΛQCD), p̂21,2 ∼ O(Λ2
QCD), (9)

where x1,2 are the usual Bjorken momentum fractions.

Several distinct kinematic regions contribute to production of a Higgs boson at low trans-

verse momentum. In the first, the Higgs recoils against a n-collinear gluon with the following

momentum in light-cone coordinates:

p3 ∼ (n · ph, n̄ · ph, ph⊥) ∼ mh(p
2
T/m

2
h, 1, pT/mh). (10)

This corresponds to a Higgs boson produced at high rapidity and low transverse momentum.

A similar region exists with the Higgs recoiling against an n̄-collinear gluon with scaling

p3 ∼ mh(1, p2T/m
2
h, pT/mh). Finally, the Higgs boson may recoil against a gluon with an

“soft” momentum p3 ∼ (pT , pT , pT ). This corresponds to the production of a Higgs at central

rapidity and low transverse momentum. Since the final-state gluons in the low-momentum

region are restricted to be either soft or collinear to the initial partons, large logarithms

of the form ln (mh/pT ) appear in the perturbative expansion and must be resummed to

all orders. The n-collinear, n̄-collinear and soft gluon modes will be used to construct the

effective theory that facilitates this resummation.

For future use we reproduce here the differential and total cross sections for the gluon-

gluon scattering process. The hadronic cross section can be expressed as a convolution of
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where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.

12
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• Matching equation:

• Effective SCET operator:

Tree level matching

Matching real 
emission graphs

Soft and Collinear emissions 
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gauge invariance of SCET.
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• SCET differential cross-section:
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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B. Factorization in SCETpT : iBFs and the soft function

It is easier to work in terms of the hadronic Mandelstam variables u and t Mandelstam

instead of pT and Y , which correspond to the Higgs transverse momentum and rapidity

respectively. These two sets of variables are related by

u = (p2 − ph)
2 = m2 −Q

√
p2T +m2 eY ,

t = (p1 − ph)
2 = m2 −Q

√
p2T +m2 e−Y . (29)

The transformation between these sets of variables has a rather simple Jacobian given by

dudt = Q2 dp2TdY. (30)

Thus, a restriction on the u and t Mandelstam variables is equivalent to a restriction on the

pT and Y of the Higgs. The double differential cross-section in the Mandelstam variables

can be written in SCET as

d2σ

du dt
=

1

2Q2

[1
4

] ∫ d2ph⊥

(2π)2

∫
dn · phdn̄ · ph

2(2π)2
(2π)θ(n · ph + n̄ · ph)δ(n · phn̄ · ph − %p 2

h⊥
−m2

h)

× δ(u− (p2 − ph)
2)δ(t− (p1 − ph)

2)
∑

initial pols.

∑

X

∣∣C(ω1,ω2)⊗ 〈hXnXn̄Xs|O(ω1,ω2)|pp〉
∣∣2

× (2π)4δ(4)(p1 + p2 − PXn − PXn̄ − PXs − ph),

(31)

where O and C denote the SCETpT operator and the matching coefficient respectively. The

⊗ symbol denotes a convolution in the label momenta ω1,2 as in Eq. (27). Note that the

constraint delta functions δ(u − (p2 − ph)2) and δ(t − (p1 − ph)2) restrict the final states

to those that satisfy u = (p2 − ph)2 and t = (p1 − ph)2, or equivalently pick out the states

with the corresponding values of pT and Y . The states Xn, Xn̄, Xs correspond to final state

particles with the n-collinear, n̄-collinear and soft momentum scaling respectively. It is only

the states with such momentum scalings that will have a non-zero overlap with the SCETpT

operator O(ω1,ω2). The overall factor of 1/4 in square brackets in Eq. (31) is from the

average over the initial proton spins.

Using the fact that the soft and collinear modes are decoupled in the leading order

Hard 
matching 
coefficient.

SCET matrix 
element.

2
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d2σ

dp2
T dY

∼
∫

PS |C ⊗ 〈O〉|2 (1)

sums logs of mh/pT

d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (2)

130 GeV < mh < 180 GeV (3)

pp → h + X (4)

αs

π
(5)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (6)

• Schematic form of SCET cross-section:

Phase space 
integrals.
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ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
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ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are
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4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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SCETpT Lagrangian we arrive at the factorization formula

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dn · ph

∫
dn̄ · ph

∫
d2k⊥

h

∫
dk+

n d
2k⊥

n

∫
dk−

n̄ d
2k⊥

n̄

∫
d4ks

×
∫

dx−d2x⊥

2(2π)3

∫
dy−d2y⊥
2(2π)3

∫
d4z

(2π)4
e

i
2k

+
n x−−i!k⊥n ·x⊥e

i
2k

−
n̄ y+−i!k⊥n̄ ·y⊥eiks·z

× δ
(
u−m2

h +Qn̄ · ph
)
δ
(
t−m2

h +Qn · ph
)
δ
(
n̄ · phn · ph − $k 2

h⊥ −m2
h

)

×
∫

dω1dω2|C(ω1,ω2, µ)|2Jαβ
n (ω1, x

−, x⊥, µ) Jn̄αβ(ω2, y
+, y⊥, µ) S(z, µ)

× δ
(
ω1 − n̄ · ph − k−

n̄ − k−
s

)
δ(ω2 − p+h − k+

n − k+
s )δ

(2)(k⊥
s + k⊥

n + k⊥
n̄ + k⊥

h ),

(32)

where the jet and soft functions are defined as

Jαβ
n (ω1, x

−, x⊥, µ) =
∑

initial pols.

〈p1|
[
gBA

1n⊥β(x
−, x⊥)δ(P̄ − ω1)gB

A
1n⊥α(0)

]
|p1〉

Jαβ
n̄ (ω1, y

+, y⊥, µ) =
∑

initial pols.

〈p2|
[
gBA

1n⊥β(y
+, y⊥)δ(P̄ − ω2)gB

A
1n⊥α(0)

]
|p2〉

S(z, µ) = 〈0|T̄
[
Tr

(
Sn̄T

DS†
n̄SnT

CS†
n

)
(z)

]
T
[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉.
(33)

T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
dω1dω2

∫
db+db−d2b⊥

4(2π)4
e

i
2 (ω1−p−h )b+e

i
2 (ω2−p+h )b−

× e−i!k⊥h ·!b⊥δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

× |C(ω1,ω2, µ)|2Jαβ
n (ω1, b

−, b⊥, µ) Jn̄αβ(ω2, b
+, b⊥, µ) S(b

+, b−, b⊥, µ).

(34)

We recast this factorization theorem in terms of jet and soft functions that have momentum

space light cone coordinates as

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

] ∫
dω1dω2|C(ω1,ω2, µ)|2

×
∫

dk+
n dk

−
n̄ Bαβ

n (ω1, k
+
n , b⊥, µ) Bn̄αβ(ω2, k

−
n̄ , b⊥, µ) S(ω1 − p−h − k−

n̄ ,ω2 − p+h − k+
n , b⊥, µ),

(35)

Hard

14

SCETpT Lagrangian we arrive at the factorization formula

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dn · ph

∫
dn̄ · ph

∫
d2k⊥

h

∫
dk+

n d
2k⊥

n

∫
dk−

n̄ d
2k⊥

n̄

∫
d4ks

×
∫

dx−d2x⊥

2(2π)3

∫
dy−d2y⊥
2(2π)3

∫
d4z

(2π)4
e

i
2k

+
n x−−i!k⊥n ·x⊥e

i
2k

−
n̄ y+−i!k⊥n̄ ·y⊥eiks·z

× δ
(
u−m2

h +Qn̄ · ph
)
δ
(
t−m2

h +Qn · ph
)
δ
(
n̄ · phn · ph − $k 2

h⊥ −m2
h

)

×
∫

dω1dω2|C(ω1,ω2, µ)|2Jαβ
n (ω1, x

−, x⊥, µ) Jn̄αβ(ω2, y
+, y⊥, µ) S(z, µ)

× δ
(
ω1 − n̄ · ph − k−

n̄ − k−
s

)
δ(ω2 − p+h − k+

n − k+
s )δ

(2)(k⊥
s + k⊥

n + k⊥
n̄ + k⊥

h ),

(32)

where the jet and soft functions are defined as
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T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that
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We recast this factorization theorem in terms of jet and soft functions that have momentum

space light cone coordinates as
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(35)
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• Factorization formula in full detail:

• iBFs and soft functions field theoretically defined as the 
fourier transform of:
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• iBFs are in general gauge dependent. However, the product of 
iBFs and the soft function is still gauge invariant.
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where the jet and soft functions are defined as
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T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗Bn ⊗Bn̄ ⊗ S (1)

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (2)

B̃n = In,i ⊗ fi, B̃n̄ = In̄,j ⊗ fj (3)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.
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where we have defined the hybrid-fourier space jet and soft functions as

Bαβ
n (ω1, k

+
n , b⊥, µ) =

∫
db−

4π
e

i
2k

+
n b−Jαβ

n (ω1, b
−, b⊥, µ),

Bαβ
n̄ (ω2, k

−
n̄ , b⊥) =

∫
db+

4π
e

i
2k

−
n̄ b+Jαβ

n (ω2, b
+, b⊥, µ),

S(ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
e

i
2 ω̃1b+e

i
2 ω̃2b−S(b+, b−, b⊥, µ).

(36)

The hybrid jet functions Bαβ
n,n̄(ω, k

±, b⊥, µ) are similar to the functions that appeared in [40]

and more recently in [41], but differ because of their dependence on the impact parameter

b⊥ and because their perpendicular indices α, β are not contracted with each other. We will

refer to these functions as impact-parameter Beam Functions (iBFs) in analogy to the Beam

Functions of [41] which have b⊥ = 0. These iBFs are implicitly defined with a zero-bin [71]

subtraction in order to avoid double counting the soft region already present in the soft

function S(ω̃1, ω̃2, b⊥, µ). For clarity we will refer to the zero-bin subtracted iBF as a purely

collinear iBF. We will refer to the iBF defined without a zero-bin subtraction as the naive

iBF or simply the iBF when the context is clear. These purely collinear iBFs that appear in

the factorization theorem are in general gauge dependent quantities. This is seen from their

dependence on the impact parameter b⊥ != 0 which leads to a spatial separation between

the fields in the matrix element not connected by a Wilson line. However, this additional

gauge link can be placed at infinity along the light-cone, and it does not contribute in

covariant gauges where the gauge potential vanishes at infinity. The iBF is thus well-defined

in covariant gauges. This is similar to what occurs for transverse-momentum dependent

PDFs in QCD [44–47]. In light-cone gauge, this additional gauge link at infinity is required

due to the asymptotic behavior of the gauge potential. It is possible that Glauber modes

are responsible for building up this extra contribution in SCET [47]. We note that the

total convolution over the hard Wilson coefficient |C(ω1,ω2, µ)|2, the purely collinear iBFs,

and the soft function in Eq. (35) is just equal to the total perturbative cross-section for

gluon-initiated Higgs + multi-parton production and thus gauge independent as required.

C. Equivalence of zero-bin and soft subtractions

The purely collinear iBFs Bαβ
n,n̄(ω, k

±, b⊥, µ) defined with a zero-bin subtraction can be

written as

Bαβ
n,n̄(ω, k

±, b⊥, µ) = B̃αβ
n,n̄(ω, k

±, b⊥, µ)− Bαβ
{n0,n̄0}(ω, k

±, b⊥, µ) (37)

where B̃αβ
n,n̄(ω, k

±, b⊥, µ) is the naive iBF or simply the iBF defined without a zero-bin

subtraction. The functions Bαβ
{n0,n̄0}(ω, k

±, b⊥, µ) denote the zero-bin limit of the iBFs. It
“Naive” iBF Zero-bin iBFPurely Collinear iBF

• Zero-bin iBF reproduces soft graphs. This is the equivalence of 
zero-bin and soft subtractions in SCET. (Lee, Sterman; Idilbi, Mehen; Chiu, 
Fuhrer,Kelly, Hoang, Manohar;...)

2

Contents

I. Introduction 2

II. PVDIS Phenomenology 8

III. Isolating Higher Twist Quark Correlations 10

A. Isospin decomposition of structure functions 10

B. Isolating twist-four contribution to the asymmetry 12

C. Equality of Rγ and RγZ at twist-four 15

IV. Sensitivity Analysis to Higher Twist Effects 16

V. Charge Symmetry Violation 18

A. Callan-Gross relation: F du
2 = 2xF du

1 18

References 21

d2σ

dp2
T dY

∼
∫

PS |C ⊗ 〈O〉|2 (1)

sums logs of mh/pT

d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (2)

d2σ

dp2
T dY

∼ H ⊗Bn ⊗Bn̄ ⊗ S (3)

130 GeV < mh < 180 GeV (4)

pp → h + X (5)

αs

π
(6)

Zero-bin Subtraction in 
order to avoid double 
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• Factorization can be reformulated with naive iBFs and an 
inverse Soft Function (iSF):
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

• This structure with an iSF is crucial for reproducing the known 
QCD cross-section.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

iBFs are proton matrix elements
and sensitive to the 

non-perturbative scale

• The iBFs are matched onto PDFs to separate the perturbative 
and non-perturbative scales:

PDFiBF Matching
coefficient
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already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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so that the factorization theorem takes the form

d2σ

du dt
=

(2π)

8(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ).

(41)

We have defined

B̃αβ
n (x1, t

+
n , b⊥, µ) ≡ 1

Q
B̃αβ

n (x1, k
+
n , b⊥, µ),

B̃αβ
n̄ (x2, t

−
n̄ , b⊥, µ) ≡ 1

Q
B̃αβ

n̄ (x2, k
−
n̄ , b⊥, µ),

H(x1x2Q
2, µ) ≡ |C(x1x2Q

2, µ)|2,
(42)

and H(x1x2Q2, µQ;µT ) denotes the result of RG evolving the function H(x1x2Q2, µ) from

the scale µQ ∼ Q ∼ mh to the scale µ ∼ pT . The choice of the scale µT ∼ pT will

become manifest once we perform the Higgs phase space integrals and rewrite the u and

t Mandelstam variables in terms of pT and Y. We will do this in the next section. The

RG evolved H(x1x2Q2, µQ;µT ) hard function sums up logarithms of mh/pT . The iBFs are

proton matrix elements and will give rise to logarithms of ΛQCD/pT in the perturbative

cross-section that must be resummed. For this reason, as discussed in the next section, the

iBFs will be matched onto PDFs and the logarithms of ΛQCD/pT will be resummed via the

standard DGLAP evolution equations.

D. iBFs to PDFs

The matching of the iBF onto the PDF is given by

B̃αβ
n (z, t+n , b⊥, µ) = −1

z

∑

i=g,q,q̄

∫ 1

z

dz′

z′
Iαβ
n;g,i(

z

z′
, t+n , b⊥, µ)fi/P (z

′, µ), (43)

where Iαβ
g,i (

z
z′ , t

+
n , b⊥, µ) is the matching coefficient and the gluon pdf is defined as

fg/P (z, µ) =
−zn̄ · p1

2

∑

spins

〈p1|
[
Tr{Bµ

⊥(0)δ(P̄ − z n̄ · p1)B⊥µ(0)}
]
|p1〉, (44)

so that the leading order perturbative expression is normalized as

f (0)
g/P (x) = δ(1− x). (45)
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cross-section that must be resummed. For this reason, as discussed in the next section, the

iBFs will be matched onto PDFs and the logarithms of ΛQCD/pT will be resummed via the

standard DGLAP evolution equations.

D. iBFs to PDFs

The matching of the iBF onto the PDF is given by
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z

∑

i=g,q,q̄

∫ 1

z

dz′
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Iαβ
n;g,i(

z

z′
, t+n , b⊥, µ)fi/P (z

′, µ), (43)

where Iαβ
g,i (

z
z′ , t

+
n , b⊥, µ) is the matching coefficient and the gluon pdf is defined as

fg/P (z, µ) =
−zn̄ · p1

2

∑

spins

〈p1|
[
Tr{Bµ

⊥(0)δ(P̄ − z n̄ · p1)B⊥µ(0)}
]
|p1〉, (44)

so that the leading order perturbative expression is normalized as

f (0)
g/P (x) = δ(1− x). (45)

Scaleless
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A matching equation analogous to Eq. (43) holds for the n̄-collinear iBF B̃αβ
n̄ . Note that

in the iBF to PDF matching in Eq. (43), the iBF can match onto quark PDFs beyond tree

level. In the initial analysis presented in this paper, we ignore this effect. It is simple and

straightforward to include the effects of the quark PDFs if desired. The matrix element on

the right-hand-side in Eq. (44) is defined without zero-bin subtraction, as is the case for

the iBFs, and contains the soft region known to be present in the QCD PDFs [73, 74]. By

noting the the PDF is scaleless and that the infrared structure of the iBF and PDF match,

as discussed further in Section V, one obtains the following all orders expression for the

Wilson coefficient

Iβα
n;g,i(

z

z′
, t+n , b⊥, µ) = −z

[
B̃αβ

n (
z

z′
, z′t+n , b⊥, µ)

]

finite part in dim-reg
. (46)

We explicitly check this expression at one order beyond tree level in Section V. An analogous

expression holds for the n̄-collinear Wilson coefficient Iβα
n̄;g,i.

Using Eq. (43) in Eq. (41) we arrive at the factorization theorem

d2σ

du dt
=

(2π)

8(N2
c − 1)2Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i#k⊥h ·#b⊥δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

× δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
] ∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

H(x1x2Q
2, µQ;µT )

×
∫

dt+n dt
−
n̄ g⊥ασ g

⊥
βω Iαβ

n;g,i(
x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ).

(47)

Next we perform the Higgs phase space integrals to get

d2σ

du dt
=

π2

4Q4(N2
c − 1)2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

×
× H(x1x2Q

2, µQ;µT ) Gij(x1, x
′
1, x2, x

′
2, u, t, µT ) fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(48)

where we have defined the u and t dependent function

Gij(x1, x
′
1, x2, x

′
2, u, t, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0

[
|$b⊥|

√
(m2

h − u)(m2
h − t)

s
−m2

h

]

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− m2
h − u

Q
− k−

n̄ , x2Q− m2
h − t

Q
− k+

n , b⊥, µT ).

(49)

• iBF is matched onto the PDF with matching coefficient defined as: 

• The PDF is known to be scaleless and defined as:

• The matching coefficient is given by:
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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Bn = In,i ⊗ fi (3)
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dp2
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∼
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sums logs of mh/pT

d2σ

dp2
T dY
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• After matching the iBFs to the PDFs we get:

• Group the perturbative pT scale functions into transverse 
   momentum dependent function(TMF):
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)
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d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (3)

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (4)

B̃n = In,i ⊗ fi, B̃n̄ = In̄,j ⊗ fj (5)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.
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In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

Hard function. Transverse momentum 
function(TMF).

PDFs.

• The transverse momentum function is a convolution of the iBF 
matching coefficients and the soft function:

• Factorization formula in full detail:
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

25

FIG. 3: The SCET diagrams contributing to the calculation of the Wilson coefficient C(ω1,ω2, µ).
The purple cross denotes the n and n̄ collinear Wilson lines and the soft Wilson lines, while gluons
with lines drawn through them are collinear gluons as the n and n̄ labels indicate. The S label
denotes a soft gluon in the first diagram.

A. Calculation of the QCD → SCETpT Wilson coefficient

We begin by discussing the matching of QCD onto SCETpT in order to extract the Wilson

coefficient C(ω1,ω2, µ). The Wilson coefficient can be extracted from the relation presented

in Eq. (27) by computing radiative corrections to the matrix elements of both the QCD and

SCET operators and encode their difference in C(ω1,ω2). For the tree level and one loop

matching one can compute the matrix elements 〈h|OQCD|p̂1, p̂2〉 and 〈h|O|p̂1, p̂2〉 in QCD

and SCETpT respectively where p̂1
µ = n̄ · p̂1 n

µ

2 and p̂µ2 = n · p̂2 n̄
µ

2 denote the momenta of the

initial state n-collinear and n̄-collinear gluons. The diagrams contributing at next-to-leading

order in αs in SCETpT are shown in Fig. 3. Labeling these graphs from left to right they

take the form

Fig. 3a = Va(p̂1, p̂2)O(n̄ · p̂1, n · p̂2),
Fig. 3b = [Vb(p̂1)− Vb0(p̂1)]O(n̄ · p̂1, n · p̂2),
Fig. 3c = [Vb(p̂2)− Vb0(p̂2)]O(n̄ · p̂1, n · p̂2), (56)

so that the SCETpT operator is multiplicatively renormalized. With on-shell external gluons

and using Feynman gauge, the quantities Va,b,b0 take the form

Va(p̂1, p̂2) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # ,

Vb(p̂1) = (−ig2CA)

∫
dd#

(2π)d
(n̄ · #)2 + (n̄ · p̂1)2 + n̄ · # n̄ · p̂1

#2(#+ p̂1)2n̄ · (#+ p̂1)n̄ · # ,

Vb0(p̂1) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # . (57)

We note that the collinear graphs in Figs. 3b and 3c require a zero-bin [71] subtraction

given by the Vb0 term in order to avoid over-counting the soft region. These integrals are all

One loop SCET graphs

• Wilson Coefficient obtained from finite part in dimensional 
regularization of the QCD result for gg->h.  At one loop we 
have:

12

where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.

All graphs scaless and 
vanish in dimensional  
regularization.

(Ahrens, Becher, Neubert, Yang; Harlander)
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

26

FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree
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extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by
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where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

• Definition of the iBF:

One loop graphs
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

31

FIG. 5: Example diagrams contributing to the next-to-leading order iSF. The four lines at each
vertex schematically denote the soft Wilson lines associated appearing in the definition of the iSF
S−1. The diagram on the left corresponds to a virtual correction to the iSF and the diagram on
the right corresponds to a real emission as seen by the cut through the gluon.

where Is is the scaleless integral

Is = 2

∫
dd!

(2π)d
1

(!2 + i0) (n̄ · !− i0) (n · !+ i0)
, (81)

and vanishes in pure dimensional regularization.

Next we compute the contribution to the iSF from the real emission of an soft gluon

corresponding to choosing |Xs〉 = |k〉 for a gluon of momentum k, as shown in the second

diagram of Fig. 5. Explicit computation gives

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −SR(1)(ω̃1, ω̃2, b⊥, µ)

= −N2
c − 1

4

g2µ2εCA

(2π)d−1

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2

∫
ddk δ(k2)

4

k+k− e
−ib·k.

(82)

Switching to an MS definition of µ and performing integrals as before, we can derive the

following expression:

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −N2
c − 1

4

αsCA

π

eεγ

Γ(1− ε)
µ2εω̃−1−ε

1 ω̃−1−ε
2 0F1

(
1− ε;−b2⊥ω̃1ω̃2

4

)
.

(83)

The expansion in ε proceeds identically to that for the iBF. Defining the expansion

S−1R(1)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

S2

ε2
+

S1

ε
+ S0, (84)

• Soft function definition:

One loop graphs
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d2σ

dudt
=

2π

16Q2(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2kh⊥

1

2

∫
dk+

n d
2k⊥

n

1

2

∫
dk−

n̄ d
2k⊥

n̄ d
4ks

×
∫

dx−d2x⊥

(2π)3
dy+d2y⊥
(2π)3

d4z

(2π)4

∫
db+db−

2(2π)2
d2b⊥
(2π)2

× θ(p+h + p−h )δ(p
+
h p

−
h − %k 2

h⊥
−m2

h)δ(u−m2
h +Qp−h )δ(t−m2

h +Qp+h )

× e
i
2k

+
n (x−−b−)e−i!kn⊥·(!x⊥−!b⊥) e

i
2k

−
n̄ (y+−b+)e−i!kn̄⊥·(!y⊥−!b⊥)

× e
i
2k

+
s (z−−b−)e

i
2k

−
s (z+−b+)e−i!kus⊥·(!z⊥−!b⊥)ei

!kh⊥·!b⊥

×
∫

dω1dω2e
i
2 (ω1−p−h )b+e

i
2 (ω2−p+h )b− |C(ω1,ω2)|2Jαβ

n (ω1, x
−, x⊥)J

αβ
n̄ (ω2, y

+, y⊥)S(z)

(A20)

where we have defined the jet and soft functions

Jαβ
n (ω1, x

−, x⊥) =
∑

initial pols.

〈p1|
[
gBA

1n⊥β(x
−, x⊥)δ(P̄ − ω1)gB

A
1n⊥α(0)

]
|p1〉

Jαβ
n̄ (ω1, y

+, y⊥) =
∑

initial pols.

〈p2|
[
gBA

1n⊥β(y
+, y⊥)δ(P̄ − ω2)gB

A
1n⊥α(0)

]
|p2〉

S(z) = 〈0|Tr
(
T̄{Sn̄T

DS†
n̄SnT

CS†
n}
)
(z)Tr

(
T{SnT

CS†
nSn̄T

DS†
n̄}
)
(0)|0〉.

(A21)

After performing the integrals over the residual momenta k+
n , k

⊥
n , k

−
n̄ , k

⊥
n̄ , k

µ
s and the x, y, z

coordinates we arrive at the simpler form

d2σ

dudt
=

2π

8Q2(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2kh⊥

∫
dω1dω2

∫
d4b

4(2π)4
e

i
2 (ω1−p−h )b+e

i
2 (ω2−p+h )b−ei

!kh⊥·!b⊥

× θ(p+h + p−h )δ(p
+
h p

−
h − %k 2

h⊥
−m2

h)δ(u−m2
h +Qp−h )δ(t−m2

h +Qp+h )

× |C(ω1,ω2)|2Jαβ
n (ω1, b

−, b⊥)J
αβ
n̄ (ω2, b

+, b⊥)S(b
+, b−, b⊥),

(A22)

which appears in Eq. (34).

Appendix B: Equivalence of zero-bin and soft subtractions

In this section we demonstrate the validity of Eq. (38), which we write here again for

convenience

E ≡
∫

dω1dω2|C(ω1,ω2, µ)|2
∫

dk+
n dk

−
n̄B

αβ
n (ω1, k

+
n , b⊥, µ) Bn̄αβ(ω2, k

−
n̄ , b⊥, µ)

× S(ω1 − p−h − k−
n̄ ,ω2 − p+h − k+

n , b⊥, µ)

=

∫
dω1dω2|C(ω1,ω2, µ)|2

∫
dk+

n dk
−
n̄ B̃

αβ
n (ω1, k

+
n , b⊥, µ) B̃n̄αβ(ω2, k

−
n̄ , b⊥, µ)

× S−1(ω1 − p−h − k−
n̄ ,ω2 − p+h − k+

n , b⊥, µ).

(B1)
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• Factorization formula:

• Schematic picture of running:

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization
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theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by
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Running
• Factorization formula:

• Schematic picture of running:

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization
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theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by
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• We derived a factorization formula in the limit:
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were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• For smaller values of pT, one can introduce a non-perturbative 
model for the transverse momentum function:

Can make non-
perturbative model

Scale dependence and 
running known
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Conclusions
• Derived factorization formula for the Higgs transverse 
   momentum distribution in an EFT approach:

• Formulation is free of Landau poles.

• Limit of very small pT can be accommodated with a model for 
  the transverse momentum dependent function (TMF).

• Formalism applies to the pT distribution of any other color 
   neutral particles
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• Resummation via RG equations in EFTs.


