

Jet Shapes in SCET

in collaboration with:
Steve Ellis

Chris Lee
Andrew Hornig Berkeley Center for Theoretical Physics \& Lawrence Berkeley National Laboratory

SCET 2010 Workshop
April 8, 2010

Chris Vermilion

Jonathan Walsh
arXiv:0912.0262
arXiv:1001.0014

Intro

- much recent work on jet substructure to find boosted tops, new physics, etc. (see Steve Ellis' talk)

- often times it relies on Monte Carlo (e.g., $1 \rightarrow 2$ splittings in Pythia)
- question: can we use SCET to predict and systematically improve our understanding of QCD jets???
- we begin by trying to determine to what extent the shapes of quark and gluon jets are different...

"The" (Original) Jet Shape

- frac. of p_{T} inside subcone of radius r (gives energy profile of jet):

Ellis, Kunzst, Soper
$\psi(r / R) \bullet$

q
g

Angularities as jet shapes

Berger, Kucs, Sterman (2003)
$\tau_{a}=\frac{1}{Q} \sum_{i \in \mathrm{jet}} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}=\frac{1}{Q} \sum_{i \in \mathrm{jet}}\left|\mathbf{p}_{i}^{T}\right| e^{-\left|\eta_{i}\right|(1-a)}$
\nearrow
sum only over jet
$\mathrm{a}=0 \quad$ thrust
a $=1$ broadening factorizability: $-\infty<a<1$

- Knowing distribution for multiple "a" also gives profile:

Angularities as jet shapes

Berger, Kucs, Sterman (2003)
$\tau_{a}=\frac{1}{Q} \sum_{i \in \mathrm{jet}} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}=\frac{1}{Q} \sum_{i \in \mathrm{jet}}\left|\mathbf{p}_{i}^{T}\right| e^{-\left|\eta_{i}\right|(1-a)}$
sum only over jet

$$
\begin{array}{lll}
\mathrm{a}=0 & \text { thrust } & \text { infrared safety: } \\
\mathrm{a}=1 & \text { broadening } & \text { factorizability: }
\end{array} \quad-\infty<a<2
$$

- Knowing distribution for multiple "a" also gives profile:

Using angularities to distinguish quark and gluon jets

PRELIMINARY

Studied quark v . gluon jets in e+e- to 3 well-separated jets in PYTHIA
cuts exist keeping $\sim 2 \%$ of gluon jets and ~20\% of quark jets,
or $\sim 15 \%$ of gluons and $\sim 8 \%$ quarks.
Greater discriminating power in correlated distributions for multiple values of a?...

Andrew Hornig

Using angularities to distinguish quark and gluon jets

PRELIMINARY

- 2d-cuts (or multivariate analysis) may have greater distinguishing power than 1d-cuts (work in progress):

Using angularities to distinguish quark and gluon jets

PRELIMINARY

\qquad
\qquad

- our starting focus: likelihood fnc. from analytical, singly-differential distributions from SCET

Jet Algorithms

- N jets \Rightarrow need jet algorithms in factorization (or global " N -jet shapes")
- Examples:

```
#}\mp@subsup{}{\textrm{K}}{T
&Cambridge-Aachen (CA)
&anti-kT
#SISCone
#Snowmass
#Sterman-Weinberg (SW)
#JADE
&...
```

- not a zoology of all algorithms (see talk by Saba for more...)
- its up to the algorithm to act at higher orders as it should

Jet Algorithms

- N jets \Rightarrow need jet algorithms in factorization (or global "N-jet shapes")
- Examples:

```
#G
#anti-kT
#SISCone
Snowmass
```

©Cambridge-Aachen (CA)

Our Focus:

"kт-type"
"cone-type"
©Sterman-Weinberg (SW)
※JADE
\&...

- not a zoology of all algorithms (see talk by Saba for more...)
- its up to the algorithm to act at higher orders as it should

$\mathrm{k}_{\mathrm{T} \text {-type Algorithms }}$

- sequential recombination:
- for all "particles", make list of d_{i} for each particle and $d_{i j} f o r ~ e a c h ~$ pair of particles

$$
d_{i j}=\min \left\{d_{i}, d_{j}\right\} \frac{\Delta R_{i j}}{R}
$$

$d_{i} \quad$ energy metric (E^{α} or p^{α} for $\mathrm{e}^{+} \mathrm{e}^{-}$or $\mathrm{pp}, \alpha= \pm 1,0$ for k_{T}, anti- k_{T}, or CA)
$\Delta R_{i j} \quad$ angular metric $\left(\theta_{i j}\right.$ or $\left.\sqrt{\Delta \phi_{i j}^{2}+\Delta \eta_{i j}^{2}}\right)$
$R \quad$ number (typically, 0.7 or 1)

- if d_{ij} is smallest, merge $\mathrm{i} \& \mathrm{j}$, call result a "particle"; if d_{i} is smallest, remove from list and call i a jet

$\mathrm{k}_{\mathrm{T} \text {-type Algorithms }}$

- for 2 particle (coll \& soft or coll \& coll), metric cancels:
- to merge, need $\mathrm{d}_{\mathrm{ij}}<\mathrm{d}_{\mathrm{i}}$ and d_{j}

$$
\begin{aligned}
& \Rightarrow d_{i j}=\min \left\{d_{i}, d_{j}\right\} \frac{\Delta R_{i j}}{R}<\min \left\{d_{i}, d_{j}\right\} \\
& \Rightarrow \Delta R_{i j}<R
\end{aligned}
$$

note: we focus on this "inclusive" type of recombination (also are "exclusive": d_{ij} is compared to some fixed number - see Saba's talk)

- metric matters for order in multi-particle state: anti- k_{T} groups hardest first, k_{T} groups softest

Cone-type algorithms

- modern example: SISCone
- find "stable" cones: parent direction = center of cone

\Rightarrow need only to impose individual restrictions $\Delta R_{i, n}<R$
- nicer? so far, but split/merge issue for overlapping stable jets

Goal: Factorize \& Resum N-jet distribution (M "measured" and N-M "unmeasured")

- "unmeasured jet": jet whose direction and energy (label momenta) are measured, but otherwise unprobed
- "measured jet": (singly) differential in angularity of jet (+ labels)
- reasons for having both:
- unmeasured jets related to total cross-section (see Saba's talk)
- unmeasured jets mimic beams w/ no measurement
- study what's needed in general for consistency of factorization

Overview of Factorization

- recall: 2 hemisphere-jet factorization:

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=H(Q, \mu) \int d \tau_{n} d \tau_{\bar{n}} \underbrace{J_{n}\left(\tau_{n} ; \mu\right) J_{\bar{n}}\left(\tau_{\bar{n}} ; \mu\right)}_{\text {inclusive jet functions }} \underbrace{S\left(\tau-\tau_{n}-\tau_{\bar{n}} ; \mu\right)}_{\text {hemisphere soft function }}
$$

- thrust:

$$
J_{n}(\tau)=\left.\frac{1}{N_{C}} \operatorname{Disc}\left[\int \mathrm{~d}^{4} x e^{i l \cdot x} \operatorname{Tr}\langle 0| \mathrm{T} \chi_{n, Q}(x) \bar{\chi}_{n, Q}(0)|0\rangle\right]\right|_{l^{+}=Q \tau}
$$

- in general (e.g., angularity) need $\delta(\tau-\hat{\tau})$ insertion w/

Overview of Factorization

- now: also need that only E in jet contributes:
- jet algorithm \rightarrow jets and out-of-jets/soft

$$
\mathcal{J}(\hat{\mathcal{E}})=\left\{\mathcal{J}_{n_{1}}(\mathcal{E}), \ldots, \mathcal{J}_{n_{N}}(\mathcal{E}), \mathcal{J}_{s}(\mathcal{E})\right\} \simeq\left\{\mathcal{J}_{n_{1}}\left(\mathcal{E}_{n_{1}}\right), \ldots, \mathcal{J}_{n_{N}}\left(\mathcal{E}_{n_{N}}\right), \mathcal{J}_{s}\left(\mathcal{E}_{s}\right)\right\}
$$

- tells which pts in phase-space belong to jet i:

$$
\hat{\theta}_{n_{i}}=\theta\left(\mathcal{J}\left(\hat{\mathcal{E}}_{n_{i}}\right)\right)
$$

$$
\left.\begin{array}{rl}
\hat{\tau}_{s_{i}} & =\hat{\theta}_{n_{i}} \hat{\tau}_{s} \\
\hat{\tau}_{\text {out }} & =\left(1-\sum_{i} \hat{\theta}_{i}\right) \hat{\tau}_{s}
\end{array}\right\} \quad \begin{aligned}
& \text { same as before } \\
& \text { but nonzero Tout }
\end{aligned}
$$

$\hat{\tau}_{n_{i}} \rightarrow \hat{\theta}_{n_{i}} \hat{\tau}_{n_{i}} \quad$ no longer "inclusive jet fncs"

Overview of Factorization

- additional multijet assumptions (\Leftrightarrow power corrections):

1. jet algorithms respect factorization (soft doesn't know about collinear splittings)
2. jets are well-collimated and well-separated: not ($\mathrm{N}-1$)-jet
3. energy outside jets is cut off by Λ : not $(N+1)$-jet
\Rightarrow not just a single, global parameter $\tau_{\text {event }} \ll 1$
\Rightarrow many scales $\tau_{\text {jet }}^{1}, \tau_{\text {jet }}^{2}, \ldots, \Lambda \ll 1$ and $R \ll n_{i} \cdot n_{j}$ (more later....)

Power Corrections from Algorithm

- need soft fnc. depend only on "n" of jets (not coll. splitting details)
- $\mathrm{k}_{\text {T-type }}$ algorithms: all orders of soft emission for 2 collinear splittings (similar story at all orders in collinear splittings): "wrong" region/"right" region $\sim \lambda^{2} / R^{2}$

anti-kT
- cone-type better (soft only need to know about " n "), but again split merge issue for borderline cases....
\Rightarrow take R ~ 1 for observables that are sensitive to soft momenta (also, calorimeter cell itself has R ~ . 1 @ LHC)

Power Corrections from Jet Separation

- we will find that consistency (μ-independence) to $\mathcal{O}\left(1 / t^{2}\right)$ where

$$
t=\frac{\tan \frac{\psi}{2}}{\tan \frac{R}{2}} \quad \psi \text { angle between jets }
$$

- suggests that this is the meaning of "well-separated" (but, no \mathcal{L})
- note: $\mathrm{t} \rightarrow \infty$ for back-to-back jets
- $1 / \mathrm{t}^{2}$ can be small with $\mathrm{R} \sim 1$:
- e.g., for 3 jet, mercedes-benz events with $R=.7,1 / t^{2}=.044$
- @ LHC, this is improved for non-central jets ($\mathrm{R} \rightarrow \mathrm{R} /$ cosh η)

Power Corrections from Jet Separation

- consistency for arbitrary t if all jets are measured (unmeasured jets need large t since there is no other handle like t)
- however, finite parts of the form

$$
f(t) \log (\Lambda / Q) \quad f(t) \sim 1 / t^{2}
$$

- again, suggestive that the "true" expansion is in $1 / \mathrm{t}^{2}$

New Calculations

- graphs with jet algorithm in N -jet calc:

gluon jet:

(A)

(B)

soft:

(C)

(D)

Jet Function (\& Zero-Bin)

- out-of-jet contributions: suppressed by N / Q
- algorithm introduces new scales \Rightarrow nonzero zero-bin!
(μ-independence/consistency of anom. dim. requires this)
- should not take scaling limits of theta functions; can take any limit on full (naive - zero-bin) limit of our results (for R >> T to get incl. jet function)
- see Teppo's talk for more discussion/details

Soft Function

- calculations: N -jets
- plots: 3-jets
soft gluons in measured jet \#i contribute

τ_{s}^{i}

Soft Function

$$
=\sum_{k \in \text { meas }} S_{S}^{\text {meas }}\left(\tau_{a}^{k}\right) \prod_{l \neq k}^{M} \delta\left(\tau_{a}^{l}\right)+S_{(1)}^{\text {unmeas }} \prod_{l}^{M} \delta\left(\tau_{a}^{l}\right)
$$

$$
E<\Lambda
$$

$$
E>\Lambda
$$

universal "swiss cheese"

- Using $\bar{S}_{i j}^{k}=-S_{i j}^{k}$ (scaleless), $S_{(1)}^{\text {unmeas }} \equiv \sum_{i \neq j}\left(S_{i j}^{\mathrm{incl}}+\sum_{k=1}^{N} S_{i j}^{k}\right)$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

$$
\mu \frac{d}{d \mu} H(Q ; \mu)=\gamma_{H}(\mu) H(Q ; \mu) \quad \mu \frac{d}{d \mu} F\left(\tau_{a} ; \mu\right)=\int d \tau_{a}^{\prime} \gamma_{F}\left(\tau_{a}-\tau_{a}^{\prime} ; \mu\right) F\left(\tau_{a}^{\prime} ; \mu\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\gamma_{J_{i}}^{\text {unmeas }}=\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
universal soft ("Swiss cheese")	$\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln ^{\tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}}$
measured jet	$\gamma_{J_{i}}^{\text {meas }}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

Requirement for consistency:

$$
\left.0=\left(\gamma_{H}(\mu)+\gamma_{S}^{\text {unmeas }}(\mu)+\sum_{i \notin \mathrm{meas}} \gamma_{J_{i}}(\mu)\right) \delta\left(\tau_{a}^{i}\right)+\sum_{i \in \mathrm{meas}}\left(\gamma_{J_{i}}\left(\tau_{a}^{i} ; \mu\right)\right)+\gamma_{S}^{\operatorname{meas}}\left(\tau_{a}^{i} ; \mu\right)\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\gamma_{J_{i}}^{\text {unmeas }}=\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
universal soft ("Swiss cheese")	$\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
measured jet	$\gamma_{J_{i}}^{\text {meas }}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

Requirement for consistency:

$$
\left.0=\left(\gamma_{H}(\mu)+\gamma_{S}^{\mathrm{unmeas}}(\mu)+\sum_{i \notin \mathrm{meas}} \gamma_{J_{i}}(\mu)\right) \delta\left(\tau_{a}^{i}\right)+\sum_{i \in \text { meas }}\left(\gamma_{J_{i}}\left(\tau_{a}^{i} ; \mu\right)\right)+\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\gamma_{J_{i}}^{\text {unmeas }}=\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
universal soft ("Swiss cheese")	$\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
measured jet	$\gamma_{J_{i}}^{\text {meas }}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

Requirement for consistency:

$$
\left.0=\left(\gamma_{H}(\mu)+\gamma_{S}^{\mathrm{unmeas}}(\mu)+\sum_{i \notin \mathrm{meas}} \gamma_{J_{i}}(\mu)\right) \delta\left(\tau_{a}^{i}\right)+\sum_{i \in \text { meas }}\left(\gamma_{J_{i}}\left(\tau_{a}^{i} ; \mu\right)\right)+\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\left.\gamma_{J_{i}}^{\text {unmeas }}=\Gamma_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}\right)+\gamma_{i}$
universal soft ("Swiss cheese")	$\left.\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}\right)+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
measured jet	$\gamma_{J_{i}}^{\text {meas }}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\left.\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

Requirement for consistency:

$$
\left.0=\left(\gamma_{H}(\mu)+\gamma_{S}^{\mathrm{unmeas}}(\mu)+\sum_{i \notin \text { meas }} \gamma_{J_{i}}(\mu)\right) \delta\left(\tau_{a}^{i}\right)+\sum_{i \in \text { meas }}\left(\gamma_{J_{i}}\left(\tau_{a}^{i} ; \mu\right)\right)+\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\gamma_{J_{i}}^{\text {unmeas }}=\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
universal soft ("swiss cheese")	$\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
measured jet	$\gamma_{J_{i}}^{\text {meas }}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$
	$\bar{\omega}_{H}=\prod_{i=1}^{N} \omega_{i}^{\mathbf{T}_{i}^{2} / \mathbf{T}^{2}}, \quad \Gamma=\frac{\alpha_{s}}{\pi}, \quad \gamma_{q}=\frac{3 \alpha_{s}}{2 \pi}, \quad \gamma_{g}=\frac{\alpha_{s}}{\pi} \frac{11 C_{A}-2 N_{F}}{6}$

Results for Anomalous Dimensions to $\mathcal{O}\left(1 / t^{2}\right)$

Requirement for consistency:

$$
\left.0=\left(\gamma_{H}(\mu)+\gamma_{S}^{\text {unmeas }}(\mu)+\sum_{i \notin \text { meas }} \gamma_{J_{i}}(\mu)\right) \delta\left(\tau_{a}^{i}\right)+\sum_{i \in \text { meas }}\left(\gamma_{J_{i}}\left(\tau_{a}^{i} ; \mu\right)\right)+\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)\right)
$$

hard	$\gamma_{H}=-\sum_{i=1}^{N}\left(\Gamma \ln \frac{\mu^{2}}{\bar{\omega}_{H}^{2}} \mathbf{T}_{i}^{2}+\gamma_{i}\right)-\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
unmeasured jet	$\gamma_{J_{i}}^{\text {unmeas }}=\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
universal soft ("swiss cheese")	$\gamma_{S}^{\text {unmeas }}=\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j}^{N} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$
measured jet	$\gamma_{J_{i}}^{\mathrm{meas}}\left(\tau_{a}^{i}\right)=\mathbf{T}_{i}^{2}\left[\Gamma \frac{2-a}{1-a} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right] \delta \delta\left(\tau_{a}^{i}\right)-2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}$
measured soft	$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)=\sum_{i=1}^{M}\left\{-\Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a} \ln \left(\frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)+2 \Gamma \mathbf{T}_{i}^{2} \frac{1}{1-a}\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$
	$\bar{\omega}_{H}=\prod_{i=1}^{N} \omega_{i}^{\mathbf{T}_{i}^{2} / \mathbf{T}^{2}}, \quad \Gamma=\frac{\alpha_{s}}{\pi}, \quad \gamma_{q}=\frac{3 \alpha_{s}}{2 \pi}, \quad \gamma_{g}=\frac{\alpha_{s}}{\pi} \frac{11 C_{A}-2 N_{F}}{6}$

Non-Global Logs

- incomplete cancellation due to radiation in restricted region:
- classic example - R/L jet mass:

- another classic example: out-of-jet radiation w/ cutoff (" η-gaps")...
- however, can write $\Sigma_{2 \mathrm{ng}}\left(Q, V, E_{\text {out }}\right)=\Sigma(Q, V) \cdot \Sigma_{\text {out }}\left(V Q, E_{\text {out }}\right) \quad$ Yu, Dokshitzer, Marchesini \rightarrow no non-global logs for $\omega_{i} \tau_{i} \sim \Lambda$

Refactorization

- the limit $\omega_{1} \tau_{1} \sim \omega_{2} \tau_{2} \sim \cdots \sim \Lambda$ is very restrictive
- consider other extreme $\omega_{1} \tau_{1} \ll \omega_{2} \tau_{2} \ll \cdots \ll \Lambda \ll \cdots \ll \omega_{M} \tau_{M}$
- 1st write $S\left(\tau_{a}^{1}, \tau_{a}^{2}, \ldots, \tau_{a}^{M} ; \mu\right)=\langle 0| \mathcal{O}_{S}^{\dagger} \Theta(\Lambda-\hat{\Lambda}) \prod_{i=1}^{M} \delta\left(\tau_{a}^{i}-\hat{\tau}_{a}^{i}\right) \mathcal{O}_{S}|0\rangle$ where $\mathcal{O}_{S}=Y_{1} \ldots Y_{M} Y_{M+1} \ldots Y_{N}$
- below μ_{M}, set $\mu_{\mathrm{M}} \rightarrow \infty \Rightarrow$ matching coeff. is $S^{\text {meas }}\left(\tau_{a}^{M}, \mu\right)$

- likewise, below Λ write $\theta(\Lambda-\hat{\Lambda})=\theta(\Lambda)+\cdots$
- this gives $S\left(\tau_{a}^{1}, \ldots, \tau_{a}^{M} ; \mu\right)=S^{\text {ummeas }}(\mu) \prod_{i=1}^{M} S^{\text {meas }}\left(\tau_{a}^{i} ; \mu\right)\langle 0| \mathcal{O}_{S}^{\dagger} \mathcal{O}_{S}|0\rangle$

$$
\begin{aligned}
& \left.S^{\text {unmeas }}(\mu)=U_{S}^{\text {ummeas }}\left(\mu_{,} \mu_{\Lambda}\right)\right)^{\text {summess }}\left(\mu_{\Lambda}\right) \\
& S^{\operatorname{mes}(}\left(\tau_{a}^{i}, \mu\right)=\int d \tau^{\prime} U_{s}^{i}\left(\tau_{a}^{i}-\tau^{\prime} ; \mu, \mu_{S}^{i}\right) s^{\operatorname{mes}}\left(\tau_{,}^{\prime}, \mu_{s}^{i}\right)
\end{aligned}
$$

- use this result to interpolate between extremes

Plots of Results

after "refactorization":

Andrew Hornig

Comparison to Pythia

Andrew Hornig

SCET 2010 Workshop (April 8)

More Jets

- our calculations are valid when there are more than 3 jets (e.g., did not assume jets were in a plane)
- written in terms of color-correlation operators $\mathbf{T}_{i} \cdot \mathbf{T}_{j}$
- lead to mixing for $\mathrm{n}>3$ jets ($\mathrm{n}>1$ @ LHC)
- however, mixing matrices computed for all $\mathrm{n}=5$ (e.g., $2 \rightarrow 3$)
- e.g., \# of indep. operators for $\mathrm{gg} \rightarrow \mathrm{ggg}$ is 44 (giving a 44×44 matrix) Sjodahl, ...

Conclusions

- consistency and no large logs for M measured, $\mathrm{N}-\mathrm{M}$ unmeasured (with power corrections as $1 / \mathrm{t}^{2}$) as long as:

- universal "swiss cheese" soft function (fill w/ anything)

- qualitative agreement w/ pythia across R, "a", jet algorithm, etc.
- raises many interesting questions \& still much to do....

Outlook

- application to likelihood fnc. of q vs. g
- hadronization uncertainty (hurts pure q)
- large angle emission uncertainty (hurts pure g)
- calculation extensions:
- doubly-differential $\frac{d \sigma}{d \tau_{a} d \tau_{b}}$
-2-loop (algorithms different?, anom. dim. dependence on R?)
- pp (use boost-inv measure; can lift some results: cf. Nick's talk)
- open questions: non-global logs in SCET, refactorization, ...

Backup

Anomalous Dimensions

gluon inside jet:
$\Theta\left(\tan ^{2} \frac{R}{2}-\frac{q^{+}}{q^{-}}\right)$
gluon outside
$\Theta\left(\frac{q^{+}}{q^{-}}-\tan ^{2} \frac{R}{2}\right) \Theta\left(\Lambda-q^{0}\right)$

	with no assigned scalings	$R \sim \lambda^{0}$
measured jet (naive)	$\left(\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}\right) \delta\left(\tau_{a}\right)$	$\left(\frac{\Gamma(2-a)}{1-a} \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2}}+\gamma_{i}\right) \delta\left(\tau_{a}\right)-\frac{2 \Gamma \mathbf{T}_{i}^{2}}{1-a}\left[\frac{\theta\left(\tau_{a}\right)}{\tau_{a}}\right]_{+}$
measured jet (0-bin)	$-\frac{\Gamma \mathbf{T}_{i}^{2}}{1-a}\left\{\ln \frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}} \delta\left(\tau_{a}\right)+2\left[\frac{\theta\left(\tau_{a}\right)}{\tau_{a}}\right]_{+}\right\}$	0 (scaleless)
unmeasured jet	$\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$	0 (scaleless)
soft in measured jet	$\left.-\frac{\Gamma}{1-a} \mathbb{T}_{i}^{2}\left\{\ln \left(\frac{\mu^{2} \tan ^{2(1-a)}}{\omega_{i}^{2}}\right)^{\frac{R}{2}}\right) \delta\left(\tau_{a}^{i}\right)-2\left[\frac{\Theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$	$-\frac{\Gamma}{1-a} \mathbf{T}_{i}^{2}\left\{\ln \left(\frac{\mu^{2} \tan ^{2}(1-a) \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)-2\left[\frac{\theta\left(\tau_{a}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$
soft "swiss cheese"	$\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$	$\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$

can take $\Lambda \sim \omega \lambda^{2}$ or assign no scaling

Anomalous Dimensions

gluon inside jet:
$\Theta\left(\tan ^{2} \frac{R}{2}-\frac{q^{+}}{q^{-}}\right)$
gluon outside
$\Theta\left(\frac{q^{+}}{q^{-}}-\tan ^{2} \frac{R}{2}\right) \Theta\left(\Lambda-q^{0}\right)$

	with no assigned scalings	$R \sim \lambda^{1}$
measured jet (naive)	$\left(\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}\right) \delta\left(\tau_{a}\right)$	$\left(\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}\right) \delta\left(\tau_{a}\right)$
measured jet (0-bin)	$-\frac{\Gamma \mathbf{T}_{i}^{2}}{1-a}\left\{\ln \frac{\mu^{2} \tan ^{2(1-a)} \frac{R}{2}}{\omega_{i}^{2}} \delta\left(\tau_{a}\right)+2\left[\frac{\theta\left(\tau_{a}\right)}{\tau_{a}}\right]_{+}\right\}$	$0($ zero cone size $)$
unmeasured jet	$\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$	$\Gamma \mathbf{T}_{i}^{2} \ln \frac{\mu^{2}}{\omega_{i}^{2} \tan ^{2} \frac{R}{2}}+\gamma_{i}$
soft in measured jet	$-\frac{\Gamma}{1-a} \mathbf{T}_{i}^{2}\left\{\ln \left(\frac{\mu^{2} \tan ^{2}(1-a) \frac{R}{2}}{\omega_{i}^{2}}\right) \delta\left(\tau_{a}^{i}\right)-2\left[\frac{\theta\left(\tau_{i}^{i}\right)}{\tau_{a}^{i}}\right]_{+}\right\}$	$0($ Zero cone size $)$
soft "swiss cheese"	$\Gamma \sum_{i=1}^{N} \mathbf{T}_{i}^{2} \ln \tan ^{2} \frac{R}{2}+\Gamma \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$	$\Gamma \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}$

can take $\Lambda \sim \omega \lambda^{2}$ or assign no scaling

