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Intro	

• much recent work on jet substructure to find boosted tops, new 
physics, etc. (see Steve Ellis’ talk)

• often times it relies on Monte Carlo (e.g., 1→2 splittings in Pythia)

• question: can we use SCET to predict and systematically improve 
our understanding of QCD jets???

• we begin by trying to determine to what extent the shapes of 
quark and gluon jets are different...
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“The” (Original) Jet Shape


• frac. of pT inside subcone of radius r (gives energy profile of jet):

order of 100 for jets with Pjet
T > 340 GeV=c. PYTHIA-

Tune A provides a good description of the measured jet
shapes in all regions of Pjet

T . The jets predicted by HERWIG
follow the measurements but tend to be narrower than the
data at low Pjet

T . The latter can be attributed to the absence
of additional soft contributions from multiple parton inter-
actions in HERWIG, which are particularly important at low
Pjet
T .
Figures 4 and 5 present the measured integrated jet

shapes, !!r=R", in bins of Pjet
T , for jets with 0:1< jYjetj<

0:7 and 37 GeV=c < Pjet
T < 380 GeV=c, compared to

HERWIG, PYTHIA-Tune A, PYTHIA and PYTHIA-(no MPI)
predictions, to illustrate the importance of a proper model-
ing of soft-gluon radiation in describing the measured jet
shapes.

Figure 6 shows, for a fixed radius r0 # 0:3, the average
fraction of the jet transverse momentum outside r # r0,
[1$!!r0=R"], as a function of Pjet

T . The points are located
at the weighted mean in each Pjet

T range. The measurements
show that the fraction of jet transverse momentum inside a
given fixed r0=R increases [1$!!r0=R" decreases] with
Pjet
T , indicating that the jets become narrower as Pjet

T in-
creases. PYTHIA with default parameters produces jets sys-
tematically narrower than the data in the whole region in
Pjet
T . The contribution from secondary parton interactions

between remnants to the predicted jet shapes [as shown by
the difference between PYTHIA and PYTHIA-(no MPI) pre-
dictions] is important at low Pjet

T . PYTHIA-Tune A predic-
tions describe all of the data well (a !2 test in Fig. 6 gives a
value of 13.6 for a total of 18 data points). HERWIG de-
scribes the measured jet shapes well but produces jets
slightly narrower than the data at low Pjet

T . This results in
a significantly higher !2 value of 33.8 for 18 data points.

B. Quark- and gluon-jet contributions

Figures 7 and 8 present the measured integrated jet
shapes, !!r=R", in bins of Pjet

T , for jets with 0:1< jYjetj<
0:7 and 37 GeV=c < Pjet

T < 380 GeV=c, compared to
PYTHIA-Tune A predictions (as in Figs. 4 and 5). In these
figures, predictions are also shown separately for quark and
gluon jets. Each hadron-level jet from PYTHIA is classified
as a quark or gluon jet by matching (Y-" plane) its direc-
tion with that of one of the outgoing partons from the hard
interaction. The Monte Carlo predictions indicate that, for
the jets used in this analysis, the measured jet shapes are
dominated by contributions from gluon-initiated jets at low
Pjet
T while contributions from quark-initiated jets become

important at high Pjet
T . This can be explained in terms of the

different partonic contents in the proton and antiproton
contributing to the low- and high-Pjet

T regions, since the
mixture of gluon and quark jet in the final state partially
reflects the nature of the incoming partons that participate

in the hard interaction. Figure 9 shows the measured 1$
!!r0=R", r0 # 0:3, as a function of Pjet

T compared to
PYTHIA-Tune A predictions with quark and gluon jets
shown separately. The trend with Pjet

T in the measured jet
shapes is mainly attributed to the different quark- and
gluon-jet mixture in the final state and perturbative QCD
effects related to the running of the strong coupling,
#s!Pjet

T " [5]. The Monte Carlo predicts that the fraction of
gluon-initiated jets decreases from about 73% at low Pjet

T to
20% at very high Pjet

T , while the fraction of quark-initiated
jets increases.

IX. SUMMARY AND CONCLUSIONS

Jet shapes have been measured in inclusive jet produc-
tion in pp collisions for jets in the kinematic region
37 GeV=c < Pjet

T < 380 GeV=c and 0:1< jY jetj< 0:7.
Jets become narrower as Pjet

T increases which can be
mainly attributed to the change in the quark- and gluon-
jet mixture in the final state and the running of the strong
coupling with Pjet

T . PYTHIA Monte Carlo predictions, using
default parameters, do not give a good description of the
measured jet shapes in the entire Pjet

T range. PYTHIA-
Tune A, which includes enhanced contributions from
initial-state gluon radiation and secondary parton interac-

FIG. 9 (color online). The measured 1$!!0:3=R" as a func-
tion of Pjet

T for jets with 0:1< jYjetj< 0:7 and 37 GeV=c <
Pjet
T < 380 GeV=c. Error bars indicate the statistical and system-

atic uncertainties added in quadrature. The predictions of
PYTHIA-Tune A (solid line) and the separate predictions for
quark-initiated jets (dotted line) and gluon-initiated jets (dashed
line) are shown for comparison. The arrows indicate the fraction
of quark- and gluon-initiated jets at low and very high Pjet

T , as
predicted by PYTHIA-Tune A.

D. ACOSTA et al. PHYSICAL REVIEW D 71, 112002 (2005)

112002-14

CDF:Ellis, Kunzst, Soper
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Angularities as jet shapes

a = 0    thrust
a = 1    broadening

infrared safety:
factorizability:

−∞ < a < 2
−∞ < a < 1

Berger, Kucs, Sterman (2003)

• Knowing distribution for multiple “a” also gives profile:

τa =
1
Q

�

i∈jet

Ei(sin θi)a(1− |cos θi|)1−a =
1
Q

�

i∈jet

|pT
i |e−|ηi|(1−a)

sum only over jet

1
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dσ

dτa

τa
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Angularities as jet shapes
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factorizability:
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1
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 jetsgluon and quark distribution for a = 0.8, for a!Studied quark v. gluon jets in 
e+e- to 3 well-separated jets in PYTHIA

cuts exist keeping ~2% of gluon jets and 
~20% of quark jets,

or ~15% of gluons and ~8% quarks.

Greater discriminating power in correlated 
distributions for multiple values of a?...

PRELIMINARY
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Using angularities to distinguish
quark and gluon jets

• 2d-cuts (or multivariate analysis) may have greater distinguishing 
power than 1d-cuts (work in progress):

PRELIMINARY
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-410
-3

10 -210 -110

-6
10

-5
10

-410

-3
10

-210

-110

0

100

200

300

400

500

600

700

800

 distribution for a = -3.0 vs. a = 0, for quark jetsa!

Thursday, April 8, 2010



 Andrew Hornig SCET 2010 Workshop (April 8)

-410
-3

10 -210 -110

-6
10

-5
10

-410

-3
10

-210

-110

0

50

100

150

200

250

300

350

 distribution for a = -3.0 vs. a = 0.8, for gluon jetsa!

-410
-3

10 -210 -110

-6
10

-5
10

-410

-3
10

-210

-110

0

100

200

300

400

500

600

 distribution for a = -3.0 vs. a = 0.8, for quark jetsa!

Using angularities to distinguish
quark and gluon jets

• our starting focus: likelihood fnc. from analytical, singly-differential 
distributions from SCET

PRELIMINARY
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Jet Algorithms

• N jets ⇒ need jet algorithms in factorization (or global “N-jet shapes”)

• Examples:
kT

Cambridge-Aachen (CA)
anti-kT

SISCone
Snowmass
Sterman-Weinberg (SW)
JADE
...

•not a zoology of all algorithms (see talk by Saba for more...)

•its up to the algorithm to act at higher orders as it should

Thursday, April 8, 2010
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Jet Algorithms

• N jets ⇒ need jet algorithms in factorization (or global “N-jet shapes”)

• Examples:
kT

Cambridge-Aachen (CA)
anti-kT

SISCone
Snowmass
Sterman-Weinberg (SW)
JADE
...

•not a zoology of all algorithms (see talk by Saba for more...)

•its up to the algorithm to act at higher orders as it should

Our Focus:

“kT-type”

“cone-type”
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kT-type Algorithms

• sequential recombination:

• for all “particles”, make list of di for each particle and dij for each 
pair of particles

•if dij is smallest, merge i & j, call result a “particle”; if di is 
smallest, remove from list and call i a jet

dij = min{di, dj}
∆Rij

R

di

∆Rij

R

energy metric (Eα or pTα for e+e- or pp, α = ±1, 0 for kT, anti-kT, or CA)

angular metric (θij or                       )

number (typically, 0.7 or 1)

�
∆φ2

ij + ∆η2
ij

Thursday, April 8, 2010
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kT-type Algorithms

•for 2 particle (coll & soft or coll & coll), metric cancels:

•to merge, need dij < di and dj

⇒

⇒                      

note: we focus on this “inclusive” type of recombination (also 
are “exclusive”: dij is compared to some fixed number - see 
Saba’s talk)

•metric matters for order in multi-particle state: anti-kT groups 
hardest first, kT groups softest

dij = min{di, dj}
∆Rij

R
< min{di, dj}

∆Rij < R
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Cone-type algorithms

• modern example: SISCone 

• find “stable” cones: parent direction = center of cone

⇒ need only to impose individual restrictions

•nicer? so far, but split/merge issue for overlapping 
stable jets

parent
direction

} R

∆Ri,n < R
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Goal: Factorize & Resum N-jet distribution 
(M “measured” and N-M “unmeasured”)

• “unmeasured jet”: jet whose direction and energy (label momenta) 
are measured, but otherwise unprobed

• “measured jet”: (singly) differential in angularity of jet (+ labels)

• reasons for having both:

• unmeasured jets related to total cross-section (see Saba’s talk)

• unmeasured jets mimic beams w/ no measurement

• study what’s needed in general for consistency of factorization
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Overview of Factorization

• recall: 2 hemisphere-jet factorization:

• thrust:

• in general (e.g., angularity) need                 insertion w/

1

σ0

dσ

dτ
= H(Q,µ)

�
dτndτn̄Jn(τn;µ)Jn̄(τn̄;µ)S(τ − τn − τn̄;µ){{

inclusive jet functions hemisphere soft function

|

Now, since δV (τn
a , l+) has no dependence on the loop momentum q, it factors out of the

ddq integrand. This implies that, after adding the tree-level contribution to the one-loop

τn
a -discontinuity in Eq. (3.24), we can write the NLO jet function as

J
n(0)
a (τn

a , l+;µ)
n/

2
= 2πδ(l+)δ(τn

a )
n/

2
+ Disc τn

a

�
2 + Pn Pn̄

�
(3.25)

= Jn(0)
(l+;µ)

n/

2
δV +

�
2 + Pn Pn̄

��
δR − δV

�
,

where J (0)
n (l+;µ) is the standard jet function [20],

Jn(0)
(l+;µ)

n/

2
≡ 1

NC
Disc

��
d

4x eil·x
Tr

�
0
��T χn,Q(x) χ̄n,Q(0)

��0
��

= 2πδ(l+)
n/

2
+ Disc

�
2 + Pn Pn̄

�
+O(α2

s) , (3.26)

containing no additional operator insertions. Each term on the second line of Eq. (3.25) is

then well-defined4 and straightforwardly calculable. In fact, Jn(l+;µ) has been calculated

to two loops [47], and we expect that the techniques we employed above are the most

practical way to extend our results to two loops. The additional term on the second line of

Eq. (3.25) is a sum of real emission diagrams containing a difference of the delta functions

δR and δV . Note that for the special case a = 0, δV (τn
a , l+) = δR(τn

a , q, l+) and this

additional term vanishes, so Jn = Jn
a=0. This is why only the standard jet function is

needed when a = 0.

To find the angularity jet function Jn
a (τn

a ;µ), we must integrate Eq. (3.25) over l+ as

in Eq. (2.16),

Jn(0)
a (τn

a ;µ) =

�
dl+

2π
J

n(0)
a (τn

a , l+;µ) . (3.27)

By integrating the known one-loop expression for J (0)
n (l+;µ) (see, e.g., [62, 63]), we find

that the contribution of the first term in Eq. (3.25) is

�
dl+

2π
Jn(0)

(l+;µ) δV = δ(τn
a )

�
1 +

αsCF

4π

�
4

�2
+

3

�
+

4

�
ln

µ2

Q2
+ 2 ln

2 µ2

Q2

+ 3 ln
µ2

Q2
+ 7− π2

��

− 1

1− a/2

��
4

�
+ 3 + 8 ln

µ

Q(τn
a )1/(2−a)

��
θ(τn

a )

τn
a

��

+

. (3.28)

It is well known that all 1/� poles in this expression are of UV origin.

4By this we mean that had we evaluated the individual cut virtual QCD-like diagrams contained in

the first line of Eq. (3.25) directly, we would have encountered the complication of cutting one lone quark

propagator and thus putting the second lone, uncut quark propagator on shell also.

– 17 –

l+ = Qτ

Jn(τ) =

δ(τ − τ̂)
τ̂ = τ(Ê) = τ(Ês +

�

i

Êni) = τ(Ês) +
�

i

τ(Êni)

R
n̂

Tµν Korchemsky,  Oderda, 
Sterman (1997);
cf. Sveshnikov, Tkachov 
(1996)E(n̂)|N� =

�

i∈N

Eiδ
2(n̂− n̂i)|N�

E(n̂) = lim
R→∞

� ∞

0
dt n̂iT0i(t, Rn̂)
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Overview of Factorization

• now: also need that only E in jet contributes: 

• jet algorithm → jets and out-of-jets/soft

• tells which pts in phase-space belong to jet i:

J (Ê) = {Jn1(E), . . . ,JnN (E),Js(E)} � {Jn1(En1), . . . ,JnN (EnN ),Js(Es)}

τ̂ni → θ̂ni τ̂ni

τ̂out = (1−
�

i

θ̂i)τ̂s

τ̂si = θ̂ni τ̂s

θ̂ni = θ(J (Êni))

same as before, 
but nonzero τout}

no longer “inclusive jet fncs”
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Overview of Factorization

• additional multijet assumptions (⇔ power corrections):

1. jet algorithms respect factorization (soft doesn’t know about 
collinear splittings)

2. jets are well-collimated and well-separated: not (N-1)-jet

3. energy outside jets is cut off by      : not (N+1)-jet

⇒ not just a single, global parameter 

⇒ many scales                                  and                   (more later....)τ1
jet, τ

2
jet, . . . ,Λ� 1

Λ

τevent � 1

R� ni · nj
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Power Corrections from Algorithm

• need soft fnc. depend only on “n” of jets (not coll. splitting details)
• kT-type algorithms: all orders of soft emission for 2 collinear 

splittings (similar story at all orders in collinear splittings):

• cone-type better (soft only need to know about “n”), but again split 
merge issue for borderline cases....

⇒ take R ~ 1 for observables that are sensitive to soft momenta 
    (also, calorimeter cell itself has R ~ .1 @ LHC)

depends both on the algorithm and the observable. Power corrections to the pT of a jet

arising from perturbative emissions (as well as from hadronization and the underlying event

in pp collisions) for various jet algorithms were explored in [57]. These power corrections

arise for similar reasons as those we discuss below, namely, perturbative emissions changing

which partons get combined into the jet. Ref. [57] finds that such power corrections scale

like lnR for small R. This result agrees with our qualitative discussion below, where we

argue that power corrections to jet angularities arising from the jet algorithms we use are

minimized when R is O(1).

One assumption that is independent of the choice of algorithm is in setting the jet axis

equal to the label direction n. Since this neglects the effects of soft particles, it is valid

up to O(λ2) corrections. It was argued in Refs. [28, 46, 54] for the case of hemisphere jet

algorithms that these corrections in turn induce corrections to the angularity τa of order

λ2(2−a), which for τa ∼ λ2, are subleading for a < 1. Essentially the same arguments can

be applied to all of the algorithms we consider.

The main difference among jet algorithms is in which soft particles are included in

a jet. For observables that scale as O(1), such as the jet energies and 3-momenta, the

contribution of soft momenta can be neglected since they scale as O(λ2). Clearly then,

these observables are not dependent on our choice of jet algorithm and so the assumptions

we made about factorization of the algorithm in deriving Eq. (4.34) are trivially satisfied.

However, for observables that scale as O(λ2) such as angularities, soft contributions

become important and so the details of the algorithms we consider become relevant. We

now demonstrate that all of the algorithms we consider miscount soft particles in an angular

area of O(λ2) relative to what the soft function can include, which is an area of O(R2). This

means that any measurement that is sensitive to soft momenta needs jets of size R � λ

for these power corrections to be considered negligible. This miscounting arises due to the

fact that factorization requires that collinear particles be combined first, and that the soft

function only knows about the parent collinear direction. None of the algorithms that we

consider strictly obey this ordering.

In Fig. 1, we illustrate the actions

Figure 1: Error induced by the (A) kT and (B) anti-

kT algorithms at NLO. Both the algorithm and the soft

function merge the large white circle. The algorithm

also merges the cross-hatched area which occupies a

region of phase space which is of O(θ2ij) for both algo-

rithms.

of the kT and anti-kT algorithms in re-

lation to the action of the soft function

for the example of one parent parti-

cle splitting into two collinear daugh-

ter particles separated by an angular

distance θij . The two dots represent

the daughter particles and the “×” de-

notes the parent particle. Factoriza-

tion assumes that all soft particles only

know about the parent particle, and

hence the soft function can only in-

clude particles in a circle of radius R

around the parent particle.

– 24 –

kT anti-kT

“wrong” region/“right” region ~ λ2/R2
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Power Corrections from Jet Separation

• we will find that consistency (μ-independence) to              where 

• suggests that this is the meaning of “well-separated” (but, no    )

• note: t → ∞ for back-to-back jets

• 1/t2 can be small with R ~ 1:

• e.g., for 3 jet, mercedes-benz events with R = .7, 1/t2 = .044

• @ LHC, this is improved for non-central jets (R → R/cosh η)

ψ

R

angle between jets

angular size of jet

O(1/t2)

t =
tan ψ

2

tan R
2

L
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Power Corrections from Jet Separation

• consistency for arbitrary t if all jets are measured (unmeasured jets 
need large t since there is no other handle like τ)

• however, finite parts of the form

• again, suggestive that the “true” expansion is in 1/t2

f(t) log(Λ/Q) f(t) ∼ 1/t2

Thursday, April 8, 2010
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New Calculations

• graphs with jet algorithm in N-jet calc:

FIG. 1: Soft function real-emission diagrams. The circle in the center represents the region of
phase space contributing to the angularity of the observed jet defined by the jet algorithm, and so
the gluons in diagrams (A) and (B) are inside the jet and those in (C) and (D) are not.

n1

n2

3n

FIG. 2: Same as Fig. 1 but with the mirror diagrams on the second column.

1. INTRODUCTION

2. BLANK SECTION 1

In the text, I may need to refer to the diagrams we actually calculate, namely,

= , (1)

and

= . (2)

These don’t look very good so I may prefer not to (I don’t need to integrate over τ in this
case so its overkill) or spend time adjusting them....

The Wilson line figures don’t distinguish quark and gluon, which I find advantageous

2

soft:
(B)(A) (D)(C)(A) (A)

FIG. 3: Diagrams contributing to the quark jet function.

FIG. 4: Diagrams contributing to the gluon jet function. (A) sunset and (B) tadpole gluon loops;
(C) ghost loop; (D) sunset and (E) tadpole collinear quark loops; (F) and (G) Wilson line emission
loops.

since they only differ by color factors which allows me to write

S13 = S31 =
T1 · T3

CF CA

which applies in all cases. I can then work out the generic case and work out color factors

for the individual cases separately, putting the result in some table. This aids the reader in

extending to more jets.

I will however find it very useful to use the quark- and gluon-jet function, as in

�
dl+

2π

� �
δRθkT

R = , (3)

or �
dl+

2π

� �
δRθcone

R = , (4)

and �
dl+

2π

�
Pn Pn̄

�
δRθcone

R = . (5)

Finally, I can also use the gluon jet functions:

�
dl+

2π

� �
δRθcone

R = . (6)

However, I should wait on the QCD like diagrams until we calculate them since it may

be more convenient to write them (and/or calculate them) as some QCD projection, like in

the quark case.

3

(B)(A) (D)(C)(A) (A)

FIG. 3: Diagrams contributing to the quark jet function.

FIG. 4: Diagrams contributing to the gluon jet function. (A) sunset and (B) tadpole gluon loops;
(C) ghost loop; (D) sunset and (E) tadpole collinear quark loops; (F) and (G) Wilson line emission
loops.

since they only differ by color factors which allows me to write

S13 = S31 =
T1 · T3

CF CA

which applies in all cases. I can then work out the generic case and work out color factors

for the individual cases separately, putting the result in some table. This aids the reader in

extending to more jets.

I will however find it very useful to use the quark- and gluon-jet function, as in

�
dl+

2π

� �
δRθkT

R = , (3)

or �
dl+

2π

� �
δRθcone

R = , (4)

and �
dl+

2π

�
Pn Pn̄

�
δRθcone

R = . (5)

Finally, I can also use the gluon jet functions:

�
dl+

2π

� �
δRθcone

R = . (6)

However, I should wait on the QCD like diagrams until we calculate them since it may

be more convenient to write them (and/or calculate them) as some QCD projection, like in

the quark case.

3

quark jet:

gluon jet:
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Jet Function (& Zero-Bin)	

• out-of-jet contributions: suppressed by Λ/Q

• algorithm introduces new scales ⇒ nonzero zero-bin!

(μ-independence/consistency of anom. dim. requires this)

• should not take scaling limits of theta functions; can take any limit 
on full (naive - zero-bin) limit of our results (for R >> τ to get incl. jet 
function)

• see Teppo’s talk for more discussion/details
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Soft Function

Λ

soft gluons in 
measured jet #i

contribute 

soft gluons outside all jets:
E cut off by

soft gluons in 
unmeasured jets:
any E ⇒ scaleless

τ i
s

• calculations: N-jets

• plots: 3-jets FIG. 1: Soft function real-emission diagrams. The circle in the center represents the region of
phase space contributing to the angularity of the observed jet defined by the jet algorithm, and so
the gluons in diagrams (A) and (B) are inside the jet and those in (C) and (D) are not.

n1

n2

3n

FIG. 2: Same as Fig. 1 but with the mirror diagrams on the second column.

1. INTRODUCTION

2. BLANK SECTION 1

In the text, I may need to refer to the diagrams we actually calculate, namely,

= , (1)

and

= . (2)

These don’t look very good so I may prefer not to (I don’t need to integrate over τ in this
case so its overkill) or spend time adjusting them....

The Wilson line figures don’t distinguish quark and gluon, which I find advantageous

2
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Soft Function

• Using                (scaleless), 

However, the second contribution is technically difficult to compute due to the complicated

shape of the space with all jets cut out of it, like Swiss cheese. A division of phase space

leading to a simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Sk
ij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄k
ij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).

In terms of these pieces, the NLO soft function with M measured jets and N −M unmea-

sured jets is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

�

i �=j




�

k∈meas

Smeas
ij (τka )

M�

l �=k

δ(τ la)





+
�

i �=j

��
Sincl
ij −

�

k∈meas

S̄k
ij +

�

k/∈meas

Sk
ij

�
M�

l

δ(τ la)



 .

(6.6)

From the definitions above, it is easy to see that the term in large parentheses on the

second line is equivalent to the sum of the last two contributions on the original list above,

i.e., the contributions from a gluon not in any jet with Eg < Λ and from a gluon in an

unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet

k with no energy restriction involves a scaleless integral over the energy that vanishes in

dimensional regularization and thus

Sk
ij + S̄k

ij = 0 . (6.7)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M�

l

δ(τ la) +
�

k∈meas

Smeas
(1) (τka )

M�

l �=k

δ(τ la) , (6.8)

where the first term in Eq. (6.8) is a universal contribution that is needed for every N -jet

observable, defined as

Sunmeas
(1) ≡

�

i �=j

�
Sincl
ij +

N�

k=1

Sk
ij

�
. (6.9)

The second term, defined as,

Smeas
(1) (τka ) ≡

�

i �=j

Smeas
ij (τka ) , (6.10)

depends on our choice of angularities as the observable.

– 35 –

However, the second contribution is technically difficult to compute due to the complicated

shape of the space with all jets cut out of it, like Swiss cheese. A division of phase space

leading to a simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Sk
ij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄k
ij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).

In terms of these pieces, the NLO soft function with M measured jets and N −M unmea-

sured jets is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

�

i �=j




�

k∈meas

Smeas
ij (τka )

M�

l �=k

δ(τ la)





+
�

i �=j

��
Sincl
ij −

�

k∈meas

S̄k
ij +

�

k/∈meas

Sk
ij

�
M�

l

δ(τ la)



 .

(6.6)

From the definitions above, it is easy to see that the term in large parentheses on the

second line is equivalent to the sum of the last two contributions on the original list above,

i.e., the contributions from a gluon not in any jet with Eg < Λ and from a gluon in an

unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet

k with no energy restriction involves a scaleless integral over the energy that vanishes in

dimensional regularization and thus

Sk
ij + S̄k

ij = 0 . (6.7)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M�

l

δ(τ la) +
�

k∈meas

Smeas
(1) (τka )

M�

l �=k

δ(τ la) , (6.8)

where the first term in Eq. (6.8) is a universal contribution that is needed for every N -jet

observable, defined as

Sunmeas
(1) ≡

�

i �=j

�
Sincl
ij +

N�

k=1

Sk
ij

�
. (6.9)

The second term, defined as,

Smeas
(1) (τka ) ≡

�

i �=j

Smeas
ij (τka ) , (6.10)

depends on our choice of angularities as the observable.

– 35 –

S̄k
ij = −Sk

ij

However, the second contribution is technically difficult to compute due to the complicated

shape of the space with all jets cut out of it, like Swiss cheese. A division of phase space

leading to a simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Sk
ij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄k
ij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).

In terms of these pieces, the NLO soft function with M measured jets and N −M unmea-

sured jets is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

�

i �=j




�

k∈meas

Smeas
ij (τka )

M�

l �=k

δ(τ la)





+
�

i �=j

��
Sincl
ij −

�

k∈meas

S̄k
ij +

�

k/∈meas

Sk
ij

�
M�

l

δ(τ la)



 .

(6.6)

From the definitions above, it is easy to see that the term in large parentheses on the

second line is equivalent to the sum of the last two contributions on the original list above,

i.e., the contributions from a gluon not in any jet with Eg < Λ and from a gluon in an

unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet

k with no energy restriction involves a scaleless integral over the energy that vanishes in

dimensional regularization and thus

Sk
ij + S̄k

ij = 0 . (6.7)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M�

l

δ(τ la) +
�

k∈meas

Smeas
(1) (τka )

M�

l �=k

δ(τ la) , (6.8)

where the first term in Eq. (6.8) is a universal contribution that is needed for every N -jet

observable, defined as

Sunmeas
(1) ≡

�

i �=j

�
Sincl
ij +

N�

k=1

Sk
ij

�
. (6.9)

The second term, defined as,

Smeas
(1) (τka ) ≡

�

i �=j

Smeas
ij (τka ) , (6.10)

depends on our choice of angularities as the observable.

– 35 –

universal “swiss cheese”

However, the second contribution is technically difficult to compute due to the complicated

shape of the space with all jets cut out of it, like Swiss cheese. A division of phase space

leading to a simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Sk
ij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄k
ij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).

In terms of these pieces, the NLO soft function with M measured jets and N −M unmea-

sured jets is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

�

i �=j




�

k∈meas

Smeas
ij (τka )

M�

l �=k

δ(τ la)





+
�

i �=j

��
Sincl
ij −

�

k∈meas

S̄k
ij +

�

k/∈meas

Sk
ij

�
M�

l

δ(τ la)



 .

(6.6)

From the definitions above, it is easy to see that the term in large parentheses on the

second line is equivalent to the sum of the last two contributions on the original list above,

i.e., the contributions from a gluon not in any jet with Eg < Λ and from a gluon in an

unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet

k with no energy restriction involves a scaleless integral over the energy that vanishes in

dimensional regularization and thus

Sk
ij + S̄k

ij = 0 . (6.7)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M�

l

δ(τ la) +
�

k∈meas

Smeas
(1) (τka )

M�

l �=k

δ(τ la) , (6.8)

where the first term in Eq. (6.8) is a universal contribution that is needed for every N -jet

observable, defined as

Sunmeas
(1) ≡

�

i �=j

�
Sincl
ij +

N�

k=1

Sk
ij

�
. (6.9)

The second term, defined as,

Smeas
(1) (τka ) ≡

�

i �=j

Smeas
ij (τka ) , (6.10)

depends on our choice of angularities as the observable.

– 35 –

However, the second contribution is technically difficult to compute due to the complicated

shape of the space with all jets cut out of it, like Swiss cheese. A division of phase space

leading to a simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Sk
ij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄k
ij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).

In terms of these pieces, the NLO soft function with M measured jets and N −M unmea-

sured jets is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

�

i �=j




�

k∈meas

Smeas
ij (τka )

M�

l �=k

δ(τ la)





+
�

i �=j

��
Sincl
ij −

�

k∈meas

S̄k
ij +

�

k/∈meas

Sk
ij

�
M�

l

δ(τ la)



 .

(6.6)

From the definitions above, it is easy to see that the term in large parentheses on the

second line is equivalent to the sum of the last two contributions on the original list above,

i.e., the contributions from a gluon not in any jet with Eg < Λ and from a gluon in an

unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet

k with no energy restriction involves a scaleless integral over the energy that vanishes in

dimensional regularization and thus

Sk
ij + S̄k

ij = 0 . (6.7)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M�

l

δ(τ la) +
�

k∈meas

Smeas
(1) (τka )

M�

l �=k

δ(τ la) , (6.8)

where the first term in Eq. (6.8) is a universal contribution that is needed for every N -jet

observable, defined as

Sunmeas
(1) ≡

�

i �=j

�
Sincl
ij +

N�

k=1

Sk
ij

�
. (6.9)

The second term, defined as,

Smeas
(1) (τka ) ≡

�

i �=j

Smeas
ij (τka ) , (6.10)

depends on our choice of angularities as the observable.

– 35 –

= +

FIG. 1: Soft function real-emission diagrams. The circle in the center represents the region of
phase space contributing to the angularity of the observed jet defined by the jet algorithm, and so
the gluons in diagrams (A) and (B) are inside the jet and those in (C) and (D) are not.

n1

n2

3n

FIG. 2: Same as Fig. 1 but with the mirror diagrams on the second column.

1. INTRODUCTION

2. BLANK SECTION 1

In the text, I may need to refer to the diagrams we actually calculate, namely,

= , (1)

and

= . (2)

These don’t look very good so I may prefer not to (I don’t need to integrate over τ in this
case so its overkill) or spend time adjusting them....

The Wilson line figures don’t distinguish quark and gluon, which I find advantageous

2

} } }
measured out of meas.,

E < Λ
in unmeas.,

E > Λ

= −
N�

i
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hard

unmeasured jet

universal soft
(“swiss cheese”)

measured jet

measured soft

Results for Anomalous Dimensions to           
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before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
unmeas(µ) and S

meas(τ ia, µ) are now matching coefficients between

two theories above and below the respective scales µ
Λ
S

and µ
i

S
, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0

as in Eq. (7.32). The result for the RG-evolved soft function is then Eq. (7.36) where each

factor at NLO is given by the solution of its RGE,

S
unmeas(µ) = U

unmeas
S (µ, µΛ)S

unmeas(µΛ) (7.39a)

S
meas(τ ia, µ) =

�
dτ �U i

S(τ
i

a − τ �;µ, µi

S)S
meas(τ �, µi

S) . (7.39b)

These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution

Collecting together the above results for the running of hard, jet, and soft functions in

the factorized cross section Eq. (4.34), we obtain the RG-improved N -jet cross section

differential in M jet shapes,

1
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(7.40)

where ω̄H is the color-weighted average of jet energies,

ω̄H =
N�

i=1

ω
T2

i
/T2

i
, (7.41)

the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have

– 47 –

Thursday, April 8, 2010



 Andrew Hornig SCET 2010 Workshop (April 8)

hard

unmeasured jet

universal soft
(“swiss cheese”)

measured jet

measured soft

Results for Anomalous Dimensions to           

γunmeas
Ji

= ΓT2
i ln

µ2

ω2
i tan

2 R
2

+ γi

γmeas
Ji

(τ ia) = T2
i

�
Γ
2− a

1− a
ln

µ2

ω2
i

+ γi

�
δ(τ ia)− 2ΓT2

i
1

1− a

�
Θ(τ ia)

τ ia

�

+

Γ =
αs

π
, γq =

3αs

2π
, γg =

αs

π

11CA − 2NF

6

O(1/t2)

0 =
�
γH(µ) + γunmeas

S
(µ) +

�

i/∈meas

γJi(µ)
�
δ(τ i

a
) +

�

i∈meas

�
γJi(τ

i

a
;µ)) + γmeas

S
(τ i

a
;µ)

�
Requirement for consistency:

γmeas
S (τ i

a;µ) =
M�

i=1

�
−ΓT2

i
1

1− a
ln

�
µ2 tan2(1−a) R

2

ω2
i

�
δ(τ i

a) + 2ΓT2
i

1
1− a

�
Θ(τ i

a)
τ i
a

�

+

�

γH = −
N�

i=1

�
Γ ln

µ2

ω̄2
H

T2
i

+ γi

�
− Γ

N�

i �=j

Ti · Tj ln
ni · nj

2

γunmeas
S = Γ

N�

i=1

T2
i ln tan2 R

2
+ Γ

N�

i �=j

Ti · Tj ln
ni · nj

2

before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
unmeas(µ) and S

meas(τ ia, µ) are now matching coefficients between

two theories above and below the respective scales µ
Λ
S

and µ
i

S
, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0

as in Eq. (7.32). The result for the RG-evolved soft function is then Eq. (7.36) where each

factor at NLO is given by the solution of its RGE,

S
unmeas(µ) = U

unmeas
S (µ, µΛ)S

unmeas(µΛ) (7.39a)

S
meas(τ ia, µ) =

�
dτ �U i

S(τ
i

a − τ �;µ, µi

S)S
meas(τ �, µi

S) . (7.39b)

These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution

Collecting together the above results for the running of hard, jet, and soft functions in

the factorized cross section Eq. (4.34), we obtain the RG-improved N -jet cross section

differential in M jet shapes,

1

σ(0)

dσN
dτ1a1 · · · dτMaM

= H(µH)

�
µH

ω̄H

�ωH(µ,µH) N�

k=M+1

J
k

ωk
(µk

J)

�
µ
k

J

ωk tan
R

2

�ωk

J
(µ,µk

J
)

S
unmeas(µΛ)

×
M�

i=1

�
�
1 + f

i

J(τ
i

a, µ
i

J) + f
i

S(τ
i

a, µ
i

S)
�
�
µ
i

S
tan1−a R

2

ωi

�ωi

S
(µ,µi

S
)

×
�
µ
i

J

ωi

�(2−a)ωi

J
(µ,µi

J
)

1

Γ[−ωi

J
(µ, µi

J
)−ωi

S
(µ, µi

S
)]

1

(τ ia)
1+ωi

J
(µ,µi

J
)+ωi

S
(µ,µi

S
)

�

+

× exp
�
K(µ;µH , µ

1,...,N
J

, µ
1,...,M
S

, µ
Λ
S) + γEΩ(µ;µ

1,...,M
J

, µ
1,...,M
S

)
�
,

(7.40)

where ω̄H is the color-weighted average of jet energies,

ω̄H =
N�

i=1

ω
T2

i
/T2

i
, (7.41)

the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have

– 47 –

Thursday, April 8, 2010



 Andrew Hornig SCET 2010 Workshop (April 8)

hard

unmeasured jet

universal soft
(“swiss cheese”)

measured jet

measured soft

Results for Anomalous Dimensions to           

γunmeas
Ji

= ΓT2
i ln

µ2

ω2
i tan

2 R
2

+ γi

γmeas
Ji

(τ ia) = T2
i

�
Γ
2− a

1− a
ln

µ2

ω2
i

+ γi

�
δ(τ ia)− 2ΓT2

i
1

1− a

�
Θ(τ ia)

τ ia

�

+

Γ =
αs

π
, γq =

3αs

2π
, γg =

αs

π

11CA − 2NF

6

O(1/t2)

0 =
�
γH(µ) + γunmeas

S
(µ) +

�

i/∈meas

γJi(µ)
�
δ(τ i

a
) +

�

i∈meas

�
γJi(τ

i

a
;µ)) + γmeas

S
(τ i

a
;µ)

�
Requirement for consistency:

γmeas
S (τ i

a;µ) =
M�

i=1

�
−ΓT2

i
1

1− a
ln

�
µ2 tan2(1−a) R

2

ω2
i

�
δ(τ i

a) + 2ΓT2
i

1
1− a

�
Θ(τ i

a)
τ i
a

�

+

�

γH = −
N�

i=1

�
Γ ln

µ2

ω̄2
H

T2
i

+ γi

�
− Γ

N�

i �=j

Ti · Tj ln
ni · nj

2

γunmeas
S = Γ

N�

i=1

T2
i ln tan2 R

2
+ Γ

N�

i �=j

Ti · Tj ln
ni · nj

2

before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
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meas(τ ia, µ) are now matching coefficients between

two theories above and below the respective scales µ
Λ
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and µ
i
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, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0

as in Eq. (7.32). The result for the RG-evolved soft function is then Eq. (7.36) where each
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These solutions allow us now to resum logarithms of all of the scales appearing in the
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where ω̄H is the color-weighted average of jet energies,
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the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have
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before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
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meas(τ ia, µ) are now matching coefficients between

two theories above and below the respective scales µ
Λ
S

and µ
i

S
, we can run each of the
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These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution
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where ω̄H is the color-weighted average of jet energies,
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the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have
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before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
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and µ
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, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0
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These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution
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where ω̄H is the color-weighted average of jet energies,
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the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have
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before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
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and µ
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, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0
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These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution

Collecting together the above results for the running of hard, jet, and soft functions in
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where ω̄H is the color-weighted average of jet energies,

ω̄H =
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the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have
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Non-Global Logs

• incomplete cancellation due to radiation in restricted region:

• classic example - R/L jet mass:

• another classic example: out-of-jet radiation w/ cutoff (“η-gaps”)...

• however, can write

→ no non-global logs for 

HRHLHRHL

b
a

b
a

k2k1
k2

k1

(a) (b)

Figure 1: Kinematic configurations of interest

It is straightforward to exactly compute the first non-trivial term S2 and this is done
in the following section. The full computation of S involves considering an ensemble of
an arbitrary number of large-angle energy-ordered soft gluons in HL, which coherently
emit a single, softer gluon into HR. For reasons elucidated later it is difficult to carry
out an all-orders treatment of such an effect analytically. We therefore opt to treat these
effects using a Monte Carlo algorithm valid in the large-NC limit. This is outlined in
section 3 and further details are given in the appendix.

Finally in section 4 we compare our results to the O (α2
s
) predictions of Event2.

Phenomenological predictions including this effect will be shown elsewhere [12].

2 Fixed order calculation

First we calculate the contribution to the jet-mass distribution from the configuration
in figure 1b, considering the right-hemisphere jet for concreteness. We introduce the
following particle four-momenta

ka =
Q

2
(1, 0, 0, 1) , (6a)

kb =
Q

2
(1, 0, 0,−1) , (6b)

k1 = x1
Q

2
(1, 0, sin θ1, cos θ1) , (6c)

k2 = x2
Q

2
(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (6d)

where we have labelled the quark and antiquark as a and b and defined energy fractions
x1,2 " 1 for the two gluons. We have ignored recoil in the kinematics, because the
jet-mass is insensitive to it.

When gluon 2 is in HR the jet mass has the value ρ = x2(1− cos θ2)/2. When only
the quark is in HR, ρ = 0.

We write the matrix element for ordered two-gluon emission as (see for example [13])

3

Dasgupta, Salam

the associated distribution,
Σ2ng(Q,V,Eout), (9)

where Q is the hard scale. It has been shown that this distribution factorizes,9

Σ2ng(Q,V,Eout) = Σ(Q,V ) · Σout(V Q,Eout), (10)

where Σ(Q,V ) is the standard global distribution of V and Σout(V Q,Eout) contains the logarith-
mic distribution in Eout. This latter distribution, containing non-global logarithms is evaluated
at the reduced scale V Q, and hence the logarithmic terms will be (αs log(V Q/Eout))n. The work

of Berger, Kúcs and Sterman16 considered the region in which V Q and Eout were comparable,
so that the NGLs give a negligible contribution. Thus, for a restricted subset of appropriately
selected events, it is possible, to ‘tune out’ the non-global logarithmically enhanced terms in
associated distributions.

4 Conclusion

To summarise, non-global logarithms are recently discovered contributions that arise in the
distributions of any QCD observable sensitive only to emissions in a restricted part of phase
space. They are phenomenologically important and significant progress has been made in re-
summing them to all orders in the large-Nc limit. One of the main directions of current work
focuses on understanding ways of designing observables so as to reduce the impact of non-global
contributions.
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Refactorization

• the limit                                       is very restrictive

• consider other extreme

• 1st write 
where 

• below μM, set μM→∞ ⇒ matching coeff. is 

• likewise, below Λ write 

• this gives

• use this result to interpolate between extremes

before that scale, and defined the surviving soft matrix element still containing additional

delta function operators as a nonperturbative shape function.

Since the factors S
unmeas(µ) and S

meas(τ ia, µ) are now matching coefficients between

two theories above and below the respective scales µ
Λ
S

and µ
i

S
, we can run each of the

individual factors separately from their natural scale, instead of from a single soft scale µ0

as in Eq. (7.32). The result for the RG-evolved soft function is then Eq. (7.36) where each

factor at NLO is given by the solution of its RGE,

S
unmeas(µ) = U

unmeas
S (µ, µΛ)S

unmeas(µΛ) (7.39a)

S
meas(τ ia, µ) =

�
dτ �U i

S(τ
i

a − τ �;µ, µi

S)S
meas(τ �, µi

S) . (7.39b)

These solutions allow us now to resum logarithms of all of the scales appearing in the

ladder in Fig. 6 when these scales are widely disparate. However, the result we obtained

in Eq. (7.28) when we took all scales to be of the same order and had a single soft scale

has the form Eq. (7.39) at NLL accuracy. We will use equation Eq. (7.39) in all cases to

interpolate between these two extremes.

7.5 Total Resummed Distribution

Collecting together the above results for the running of hard, jet, and soft functions in

the factorized cross section Eq. (4.34), we obtain the RG-improved N -jet cross section

differential in M jet shapes,
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where ω̄H is the color-weighted average of jet energies,

ω̄H =
N�

i=1

ω
T2

i
/T2

i
, (7.41)

the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (7.15), and we have
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There are N Wilson lines appearing in the operator OS ,

Figure 6: Soft
scales.

OS = Y1 . . . YMYM+1 . . . YN , (7.35)

corresponding to the M measured jets and N −M unmeasured jets. The

scales associated with soft gluons entering the M measured jets whose

shapes are measured to be τ1, . . . , τM are µ1
S , . . . , µ

M
S , given by Eq. (6.23).

The scale associated with soft gluons outside of measured jets is µΛ
S given

by Eq. (6.21). We have illustrated the ladder of these scales in Fig. 6. Each

of these soft scales can be associated with different soft fields Ai
s whose

momenta scale as λ2
iωi where λi is associated with the typical transverse momentum λiωi

of the collinear modes for the ith jet. For measured jets, λi is determined by τ ia, while for

unmeasured jets λi ∼ tan(R/2). For soft gluons outside jets, however, the soft momentum

is set by the cutoff scale Λ, which is why µΛ
S appears in the ladder of Fig. 6.

At a scale µ larger than all µi
S and µΛ

S , the soft function is calculated as we presented

in Sec. 6. In particular, we take the quantities τ ia and Λ to be nonzero and finite. At a scale

µ below µ1
S , we integrate out soft gluons of virtuality µ1

S and match onto a theory with soft

gluons of virtuality µ2
S . The scale µ

1
S associated with τ1a is taken to infinity, and phase space

integrals for soft gluons entering the measured jet 1 become zero (see, e.g., Eq. (B.17)).

Therefore, the matching coefficient from the theory above µ1
S to the theory below is just

the measured jet 1 contribution Smeas(τ1a ) to the soft function given by Eq. (6.22). The

same occurs when matching from the theory above each scale µi
S for soft gluons entering

measured jet i to the scale below µi
S , giving a matching coefficient Smeas(τ ia).

When going through the scale µΛ
S , in the theory above this scale, the calculation of

unmeasured contributions to the soft function gives the result Eq. (6.20), by treating Λ as a

nonzero, finite cutoff. In the theory below µΛ
S , we take Λ to infinity, making all phase space

integrals originally cutoff by Λ to be scaleless and thus zero. So the matching coefficient

between the theory above and below µΛ
S is just Sunmeas.

After performing the above matchings all the way down to the lowest soft scale Fig. 6,

we find that the original soft function S(τ1a , . . . , τ
M
a ;µ) can be expressed to all orders as

S(τ1a , . . . , τ
M
a ;µ) = Sunmeas(µ)

M�

i=1

Smeas(τ ia;µ) �0| O
†
SOS |0� , (7.36)

where to next-to-leading order Smeas and Sunmeas are given by

Sunmeas(µ) = 1 + Sunmeas
(1) (µ) (7.37)

Smeas(τ ia;µ) = δ(τ ia) + Smeas
(1) (τ ia;µ) , (7.38)

where Sunmeas
(1) is given by Eq. (6.20) and Smeas

(1) is given by Eq. (6.22). Note that no

operators restricting the jet shape or the phase space appear in the final matrix element of

soft fields living at the lowest scale on the ladder in Fig. 6. If all the scales on the ladder

are at a perturbative scale, we can now just use �O†
SOS� = 1 to eliminate the final matrix

element. If any scale is nonperturbative, we should have stopped the matching procedure
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From the results tabulated in Table 3, up to corrections of O(1/t2), we see that, remark-

ably, this relation is indeed satisfied! This is highly nontrivial, as jet and soft anomalous

dimensions depend on the jet radius R and the jet shape τa, while the hard function does

not; in addition, the hard and soft functions know the directions ni of all N jets, while the

jet functions do not. These dependencies cancel precisely between the R-dependent pieces

of unmeasured jet contributions to the jet and soft functions, between τa-dependent pieces

of the measured jet contributions, and between ni · nj-dependent pieces of the hard and

soft functions. The sum of all jet and soft anomalous dimensions then precisely matches

the hard anomalous dimensions, satisfying Eq. (7.33).

Making the satisfaction of consistency even more nontrivial, individual contributions

to the infinite part of the soft function, and therefore its anomalous dimension, given by

Table 2 depend on the energy cut parameter Λ as well. However, these terms cancel in the

sum over the contributions Sincl
ij and Si

ij in the first two rows of Table 2. The double poles

of the form 1
� lnΛ arise from regions of phase space where a soft gluon can become both

collinear to a jet direction (giving a 1/�) and soft (giving a lnΛ). These regions exist in

the integral over all directions giving Sincl
ij but are subtracted back out in the contributions

Si
ij . In the surviving “Swiss cheese” region the regions giving these double poles are cut

out.

The O(1/t2) terms that violate consistency arise whenever there are unmeasured jets.

While this limit is not required for the contribution of measured jets to the anomalous

dimension to satisfy the consistency condition Eq. (7.33), the finite parts of measured

jet contributions to the soft function contain large logarithms of ω/Λ that can not be

minimized with a scale choice but are suppressed by O(1/t2) (cf. Eq. (B.37) of Appendix

B). This is the manifestation of the fact that jets need to be well-separated, as explained

in Sec. 4. For the remainder of the paper, we work strictly in the large-t limit.

7.4 Refactorization of the Soft Function

Our results for the soft function in Sec. 6.3 make clear that in general there are multiple

scales that appear in the soft function: the µ1
S , . . . , µ

M
S associated with the M measured

jets and the scale µΛ
S associated with the out-of-jet cutoff Λ. When these scales are all

comparable, we can RG evolve the soft function from the single scale µS . However, when

any of them differ considerably from the others, we need to “refactorize” the soft function

into multiple contributions, each of which is sensitive to a single energy scale. For illustra-

tion, take the scales µi
S to be such that µ1

S � µ2
S � · · · � µM

S as in Fig. 6. We also take

µl−1
S � µΛ

S � µl
S for our discussion, but the result is independent of whether µΛ

S lies in the

range µ1
S < µΛ

S < µM
S or not.

We can express the soft function appearing in Eq. (4.34) as

S(τ1a , τ
2
a , . . . , τ

M
a ;µ) = �0|O†

SΘ(Λ− Λ̂)
M�

i=1

δ(τ ia − τ̂ ia)OS |0� , (7.34)

where the operator τ ia returns the contribution to τa of final-state soft particles entering

jet i, and Λ̂ returns the energy of final-state soft particles outside of all N jets. We have

kept the dependence on the scales µi
S and on Λ implicit on the left-hand side.
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There are N Wilson lines appearing in the operator OS ,
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OS = Y1 . . . YMYM+1 . . . YN , (7.35)
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S , given by Eq. (6.23).

The scale associated with soft gluons outside of measured jets is µΛ
S given

by Eq. (6.21). We have illustrated the ladder of these scales in Fig. 6. Each

of these soft scales can be associated with different soft fields Ai
s whose
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of the collinear modes for the ith jet. For measured jets, λi is determined by τ ia, while for

unmeasured jets λi ∼ tan(R/2). For soft gluons outside jets, however, the soft momentum

is set by the cutoff scale Λ, which is why µΛ
S appears in the ladder of Fig. 6.

At a scale µ larger than all µi
S and µΛ

S , the soft function is calculated as we presented

in Sec. 6. In particular, we take the quantities τ ia and Λ to be nonzero and finite. At a scale

µ below µ1
S , we integrate out soft gluons of virtuality µ1

S and match onto a theory with soft

gluons of virtuality µ2
S . The scale µ

1
S associated with τ1a is taken to infinity, and phase space

integrals for soft gluons entering the measured jet 1 become zero (see, e.g., Eq. (B.17)).

Therefore, the matching coefficient from the theory above µ1
S to the theory below is just

the measured jet 1 contribution Smeas(τ1a ) to the soft function given by Eq. (6.22). The

same occurs when matching from the theory above each scale µi
S for soft gluons entering

measured jet i to the scale below µi
S , giving a matching coefficient Smeas(τ ia).

When going through the scale µΛ
S , in the theory above this scale, the calculation of

unmeasured contributions to the soft function gives the result Eq. (6.20), by treating Λ as a

nonzero, finite cutoff. In the theory below µΛ
S , we take Λ to infinity, making all phase space

integrals originally cutoff by Λ to be scaleless and thus zero. So the matching coefficient

between the theory above and below µΛ
S is just Sunmeas.

After performing the above matchings all the way down to the lowest soft scale Fig. 6,

we find that the original soft function S(τ1a , . . . , τ
M
a ;µ) can be expressed to all orders as

S(τ1a , . . . , τ
M
a ;µ) = Sunmeas(µ)
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where to next-to-leading order Smeas and Sunmeas are given by

Sunmeas(µ) = 1 + Sunmeas
(1) (µ) (7.37)

Smeas(τ ia;µ) = δ(τ ia) + Smeas
(1) (τ ia;µ) , (7.38)

where Sunmeas
(1) is given by Eq. (6.20) and Smeas

(1) is given by Eq. (6.22). Note that no

operators restricting the jet shape or the phase space appear in the final matrix element of

soft fields living at the lowest scale on the ladder in Fig. 6. If all the scales on the ladder

are at a perturbative scale, we can now just use �O†
SOS� = 1 to eliminate the final matrix

element. If any scale is nonperturbative, we should have stopped the matching procedure
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ω1τ1 ∼ ω2τ2 ∼ · · · ∼ Λ

θ(Λ− Λ̂) = θ(Λ) + · · ·

There are N Wilson lines appearing in the operator OS ,

Figure 6: Soft
scales.

OS = Y1 . . . YMYM+1 . . . YN , (7.35)
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scales associated with soft gluons entering the M measured jets whose

shapes are measured to be τ1, . . . , τM are µ1
S , . . . , µ

M
S , given by Eq. (6.23).

The scale associated with soft gluons outside of measured jets is µΛ
S given

by Eq. (6.21). We have illustrated the ladder of these scales in Fig. 6. Each

of these soft scales can be associated with different soft fields Ai
s whose

momenta scale as λ2
iωi where λi is associated with the typical transverse momentum λiωi

of the collinear modes for the ith jet. For measured jets, λi is determined by τ ia, while for

unmeasured jets λi ∼ tan(R/2). For soft gluons outside jets, however, the soft momentum

is set by the cutoff scale Λ, which is why µΛ
S appears in the ladder of Fig. 6.

At a scale µ larger than all µi
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S , the soft function is calculated as we presented

in Sec. 6. In particular, we take the quantities τ ia and Λ to be nonzero and finite. At a scale

µ below µ1
S , we integrate out soft gluons of virtuality µ1

S and match onto a theory with soft

gluons of virtuality µ2
S . The scale µ

1
S associated with τ1a is taken to infinity, and phase space

integrals for soft gluons entering the measured jet 1 become zero (see, e.g., Eq. (B.17)).
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S to the theory below is just

the measured jet 1 contribution Smeas(τ1a ) to the soft function given by Eq. (6.22). The

same occurs when matching from the theory above each scale µi
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measured jet i to the scale below µi
S , giving a matching coefficient Smeas(τ ia).

When going through the scale µΛ
S , in the theory above this scale, the calculation of

unmeasured contributions to the soft function gives the result Eq. (6.20), by treating Λ as a

nonzero, finite cutoff. In the theory below µΛ
S , we take Λ to infinity, making all phase space

integrals originally cutoff by Λ to be scaleless and thus zero. So the matching coefficient

between the theory above and below µΛ
S is just Sunmeas.

After performing the above matchings all the way down to the lowest soft scale Fig. 6,

we find that the original soft function S(τ1a , . . . , τ
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a ;µ) can be expressed to all orders as
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(1) (τ ia;µ) , (7.38)
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(1) is given by Eq. (6.20) and Smeas

(1) is given by Eq. (6.22). Note that no

operators restricting the jet shape or the phase space appear in the final matrix element of

soft fields living at the lowest scale on the ladder in Fig. 6. If all the scales on the ladder

are at a perturbative scale, we can now just use �O†
SOS� = 1 to eliminate the final matrix

element. If any scale is nonperturbative, we should have stopped the matching procedure
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ω1τ1 � ω2τ2 � · · ·� Λ� · · ·� ωMτM

Smeas(τM
a , µ)
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Plots of Results
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Comparison to Pythia
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More Jets

• our calculations are valid when there are more than 3 jets (e.g., did 
not assume jets were in a plane)

• written in terms of color-correlation operators

• lead to mixing for n > 3 jets (n > 1 @ LHC)

• however, mixing matrices computed for all n=5 (e.g., 2 → 3)

• e.g., # of indep. operators for gg → ggg is 44 (giving a 44x44 matrix)

Ti · Tj

Sjodahl, ...
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Conclusions

• consistency and no large logs for M measured, N-M unmeasured 
(with power corrections as 1/t2) as long as:

I) in region 

II) in region 

• universal “swiss cheese” soft function (fill w/ anything)

• qualitative agreement w/ pythia across R, “a”, jet algorithm, etc.

• raises many interesting questions & still much to do....

ω1τ1 ∼ ω2τ2 ∼ · · · ∼ Λ

ω1τ1 � ω2τ2 � · · ·� Λ� · · ·� ωMτM
} interpolate 

between
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Outlook

• application to likelihood fnc. of q vs. g

• hadronization uncertainty (hurts pure q)

• large angle emission uncertainty (hurts pure g)

• calculation extensions: 

• doubly-differential 

• 2-loop (algorithms different?, anom. dim. dependence on R?)

• pp (use boost-inv measure; can lift some results: cf. Nick’s talk)

• open questions: non-global logs in SCET, refactorization, ...

dσ

dτadτb
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with no assigned scalings
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measured jet (0-bin) 0 (scaleless)
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with no assigned scalings
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2 R
2

+ γi

�
δ(τa)

− ΓT2
i

1− a

�
ln

µ2 tan2(1−a) R
2

ω2
i

δ(τa) + 2

�
θ(τa)

τa

�

+

�

Γ
N�

i=1

T2
i ln tan

2 R

2
+ Γ

�

i �=j

Ti ·Tj ln
ni · nj
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R ∼ λ1

�
ΓT2

i ln
µ2

ω2
i tan

2 R
2

+ γi

�
δ(τa)

ΓT2
i ln

µ2

ω2
i tan

2 R
2

+ γi

no soft or 0-bin contributions; R-dep. uncancelledΛ ∼ ωλ2can take or assign no scaling

Γ
�

i �=j

Ti · Tj ln
ni · nj
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