Quark fragmentation within an identified jet

Massimiliano Procura

SCET Workshop, Ringberg Castle, April 2010

outline

Single inclusive hadron production: the fragmentation function $D_{j}^{h}(z)$Fragmenting jet function $\mathcal{G}_{j}^{h}(s, z)$ in SCET factorization formulae when the jet invariant mass is measured

Case study: $\bar{B} \rightarrow X \pi \ell \bar{\nu}$, where $(X \pi)_{u}$ is a jet produced by a u-quark and the pion fragments from the jetRelations between $\mathcal{G}_{j}^{h}(s, z)$ the jet function $J_{j}(s)$ (pert.) and $D_{j}^{h}(z)$ (non-pert.)
M.P. and I. W. Stewart, PRD 81 (2010), arXiv:0911.4980
A. Jain, M.P. and W. J. Waalewijn, in preparation

Single inclusive hadron production

$$
\begin{aligned}
& \text { e.g. : } e^{+} e^{-} \rightarrow h X \\
& q^{2}>0, \nu=P \cdot q \\
& d \sigma \sim L^{\alpha \beta} W_{\alpha \beta} \frac{d^{3} P}{(2 \pi)^{3} 2 E}
\end{aligned}
$$

$$
W_{\alpha \beta}=\frac{1}{4 \pi} \int d^{4} \xi e^{i q \cdot \xi} \sum_{X}\langle 0| J_{\alpha}(\xi)|h X\rangle\langle h X| J_{\beta}(0)|0\rangle
$$

$$
\text { vs. } \quad W_{\alpha \beta}^{\mathrm{DIS}}=\frac{1}{4 \pi} \int d^{4} \xi e^{i q \cdot \xi} \sum_{X}\langle P| J_{\alpha}(\xi)|X\rangle\langle X| J_{\beta}(0)|P\rangle \rightarrow \mathrm{OPE}
$$

Factorization and iragnentation

Factorization proofs to all orders in α_{s}, at leading power, for processes in which all Lorentz invariants are large and comparable, except masses (i.e. $q^{2}, \nu \rightarrow \infty$ in $e^{+} e^{-} \rightarrow h X$)

Collins, Soper, Sterman

Separation between long- and short-distance contributions:
$\frac{1}{\sigma_{0}} \frac{d \sigma^{h}}{d z}\left(e^{+} e^{-} \rightarrow h X\right)=\sum_{i=u, \bar{u}, d, g \ldots} \int_{z}^{1} \frac{d x}{x} C_{i}\left(\frac{E_{\mathrm{cm}}^{2}}{\mu^{2}}, \frac{z}{x}, \alpha_{S}(\mu)\right) D_{i}^{h}(x, \mu)+\ldots$
z is the fraction hadron/parton large light-cone momentum component

The fragmentation function $D_{i}^{h}(z)$ is non-perturbative but universal
constraints on model parameters from phenomenology

pion fragmentation from phenomenology

$$
\frac{1}{\sigma_{0}} \frac{d \sigma^{\pi^{+}}}{d z}\left(e^{+} e^{-} \rightarrow \pi^{+} X\right)=\sum_{i=u, \bar{u}, d, g \ldots . .} \int_{z}^{1} \frac{d x}{x} C_{i}\left(\frac{E_{\mathrm{cm}}^{2}}{\mu^{2}}, \frac{z}{x}, \alpha_{S}(\mu)\right) D_{i}^{\pi^{+}}(x, \mu)
$$

$$
D_{i}^{\pi^{+}}\left(z, Q_{0}^{2}=1 \mathrm{GeV}^{2}\right)=N_{i}^{\pi^{+}} z^{\alpha_{i}^{\pi^{+}}}(1-z)^{\beta_{i}^{\pi^{+}}}
$$

$$
z=\frac{2}{\sqrt{s}} E_{h}^{\mathrm{CM}}
$$

CERN, DESY \& SLAC data

Hirai et al. (2007)

Deflinition of fragmentation function

Collins and Soper (1982)
$n^{\mu}=(1,0,0,1), \quad \bar{n}^{\mu}=(1,0,0,-1), \quad p^{+}=n \cdot p, \quad p^{-}=\bar{n} \cdot p \quad$ (large)
$D_{q}^{h}(z)=\left.z \int \frac{\mathrm{~d} x^{+}}{4 \pi} e^{i k^{-} x^{+} / 2} \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X}\langle 0| \not \ddot{h} \Psi\left(x^{+}, 0,0_{\perp}\right)|X h\rangle\langle X h| \bar{\Psi}(0)|0\rangle\right|_{p_{h}^{\perp}=0}$

Gauge-invariance: $\Psi\left(x^{+}, 0,0_{\perp}\right)$ contains a Wilson line of gluon fields

Boost invariance: D is a function of $z=p_{h}^{-} / k^{-}$$|X h\rangle$ is jet-like but $D(z)$ does not carry information about jet features
what amounts to the measurement of $m_{X h}^{2}$?

Case studys semi-nelusive B-clecay

Weak transition $b \rightarrow u \ell \bar{\nu}_{\ell}$: single jet X_{u} initiated by u-quark

Inclusive decay $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$: factorization analysis involving jet functions
Korchemsky and Sterman (1994)
many people in the audience ...

Semi-inclusive vs. inclusive:

$$
X_{u} \longmapsto(X h)_{u,} \quad m_{h} \ll m_{B} \quad \text { (e.g. pion) }
$$

In $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ the spectrum for $m_{X_{u}}^{2}$ is available

Kinematics

$\bar{B} \rightarrow X \pi \ell \bar{\nu}:$ six independent kinematic variables in the B rest frame

$$
\frac{d^{6} \Gamma}{d m_{X \pi}^{2} d q^{2} d E_{\ell} d p_{\pi}^{x} d p_{\pi^{y}}^{y} d p_{\pi}{ }^{z}} \propto \frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{(2 \pi)^{3} 2 \sqrt{\vec{p}_{\pi}^{2}+m_{\pi}^{2}}} L^{\alpha \beta} W_{\alpha \beta}
$$

Madronic tensor and decay sates

In full QCD, in the B rest frame $\left(p_{B}^{\mu}=m_{B} v^{\mu}\right)$:

$$
W_{\mu \nu}=\frac{1}{4 \pi m_{B}} \int d^{4} x e^{-i q \cdot x} \sum_{X}\langle\bar{B}| J_{\mu}^{u \dagger}(x)|X \pi\rangle\langle X \pi| J_{\nu}^{u}(0)|\bar{B}\rangle
$$

$$
\begin{aligned}
W_{\alpha \beta}= & -g_{\alpha \beta} W_{1}+v_{\alpha} v_{\beta} W_{2}-i \epsilon_{\alpha \beta \mu \nu} v^{\mu} q^{\nu} W_{3}+q_{\alpha} q_{\beta} W_{4}+\left(v_{\alpha} q_{\beta}+v_{\beta} q_{\alpha}\right) W_{5} \\
& +\left(v_{\alpha} p_{\pi \beta}+v_{\beta} p_{\pi_{\alpha}}\right) W_{6}-i \epsilon_{\alpha \beta \mu \nu} p_{\pi}^{\mu} q^{\nu} W_{7}-i \epsilon_{\alpha \beta \mu \nu} v^{\mu} p_{\pi}^{\nu} W_{8}+p_{\pi_{\alpha}} p_{\pi_{\beta}} W_{9} \\
& +\left(p_{\pi_{\alpha}} q_{\beta}+p_{\pi \beta} q_{\alpha}\right) W_{10}
\end{aligned}
$$

$$
W_{i}=W_{i}\left(p_{X \pi}^{+}, p_{X \pi}^{-}, p_{\pi}^{+}, p_{\pi}^{-}\right)
$$

Madronic tensor and decay sates

In full QCD, in the B rest frame ($p_{B}^{\mu}=m_{B} v^{\mu}$):

$$
W_{\mu \nu}=\frac{1}{4 \pi m_{B}} \int d^{4} x e^{-i q \cdot x} \sum_{X}\langle\bar{B}| J_{\mu}^{u \dagger}(x)|X \pi\rangle\langle X \pi| J_{\nu}^{u}(0)|\bar{B}\rangle
$$

Integrating $d^{6} \Gamma$ over E_{ℓ} and ϕ_{ℓ} :

$$
\frac{d^{4} \Gamma}{d p_{X \pi}^{+} d p_{X \pi}^{-} d p_{\pi}^{-} d p_{\pi}^{+}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{128 \pi^{5}}\left(K_{1} W_{1}+K_{2} W_{2}+K_{6} W_{6}+K_{9} W_{9}\right)
$$

$$
K_{1}=\left(m_{B}-p_{X \pi}^{-}\right)\left(m_{B}-p_{X \pi}^{+}\right)\left(p_{X \pi}^{-}-p_{X \pi}^{+}\right)^{2}
$$

$$
K_{2}=\frac{1}{12}\left(p_{X \pi}^{-}-p_{X \pi}^{+}\right)^{4}
$$

$$
K_{6}=\frac{1}{6}\left(p_{X \pi}^{-}-p_{X \pi}^{+}\right)^{3}\left[m_{B}\left(p_{\pi}^{-}-p_{\pi}^{+}\right)+p_{\pi}^{+} p_{X \pi}^{-}-p_{\pi}^{-} p_{X \pi}^{+}\right],
$$

$$
K_{9}=\frac{1}{12}\left(p_{X \pi}^{-}-p_{X \pi}^{+}\right)^{2}\left\{\left[p_{\pi}^{+}\left(m_{B}-p_{X \pi}^{-}\right)+p_{\pi}^{-}\left(m_{B}-p_{X \pi}^{+}\right)\right]^{2}-4 m_{\pi}^{2}\left(m_{B}-p_{X \pi}^{-}\right)\left(m_{B}-p_{X \pi}^{+}\right)\right\}
$$

SCET factoritation

$(X \pi)_{u}$ collinear jet: $p_{X \pi}^{\mu} \sim\left(\Lambda_{\mathrm{QCD}}, m_{b}, \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right)=m_{b}\left(\lambda^{2}, 1, \lambda\right) \sim p_{X}^{\mu}$The pion fragments from the jet: $p_{\pi}^{\mu} \sim\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}, m_{b}, \Lambda_{\mathrm{QCD}}\right), p_{\pi}^{2} \ll m_{X \pi}^{2}$

Matching the $b \rightarrow u$ QCD current onto SCET operators at a scale $\sim m_{b}$:

$$
J_{u}^{\nu}(x)=e^{i \mathcal{P} \cdot x-i m_{b} v \cdot x} \sum_{j=1}^{3} \sum_{\omega} C_{j}(\omega) J_{u j}^{\nu(0)}(\omega)
$$

Bauer, Fleming, Pirjol, Stewart (2001)
where

$$
\begin{array}{ll}
\mathcal{P}^{\mu}=n^{\mu} \overline{\mathcal{P}} / 2+\mathcal{P}_{\perp}^{\mu}, & J_{u j}^{\nu}{ }^{(0)}(\omega)=\bar{\chi}_{n, \omega} \Gamma_{j}^{\nu} \mathcal{H}_{v} \\
\bar{\chi}_{n, \omega} \equiv\left(\bar{\xi}_{n} W_{n}\right) \delta_{\omega, \overline{\mathcal{P}}^{\dagger}}, & \mathcal{H}_{v} \equiv Y^{\dagger} h_{v}
\end{array}
$$

The hadronic tensor at leading order in SCET:
same steps as in the inclusive case cf. Lee and Stewart (2005)

$$
\begin{aligned}
W_{\mu \nu}^{(0)} & =\frac{1}{4 \pi} \int d^{4} x e^{-i r \cdot x} \sum_{j, j^{\prime}=1}^{3} \sum_{\omega, \omega^{\prime}} C_{j^{\prime}}\left(\omega^{\prime}\right) C_{j}(\omega) \delta_{\omega^{\prime}, \bar{n} \cdot p} \\
& \times \sum_{X}\left\langle\bar{B}_{v}\right|\left[\overline{\mathcal{H}}_{v} \bar{\Gamma}_{j^{\prime} \mu} \chi_{n, \omega^{\prime}, 0_{\perp}}\right](x)|X \pi\rangle\langle X \pi|\left[\bar{\chi}_{n, \omega} \Gamma_{j \nu} \mathcal{H}_{v}\right](0)\left|\bar{B}_{v}\right\rangle
\end{aligned}
$$

with

$$
r^{\mu}=\bar{n}^{\mu} r^{+} / 2, \quad r^{+}=m_{b}-q^{+} \sim \lambda^{2}, \quad \chi_{n, \omega^{\prime}, 0_{\perp}} \equiv \delta_{\omega, \overline{\mathcal{P}}} \delta_{0, \mathcal{P}_{\perp}}\left(W_{n}^{\dagger} \xi_{n}\right)
$$

Group usoft and collinear fields by a Fierz transformation:

$$
\begin{aligned}
{\left[\overline{\mathcal{H}}_{v} \bar{\Gamma}_{j^{\prime} \mu} \chi_{n, \omega^{\prime}, 0_{\perp}}\right](x)\left[\bar{\chi}_{n, \omega} \Gamma_{j \nu} \mathcal{H}_{v}\right](0) } & =(-1)\left[\overline{\mathcal{H}}_{v}(x) \bar{\Gamma}_{j^{\prime} \mu} \frac{\not x}{2} \Gamma_{j \nu} \mathcal{H}_{v}(0)\right]\left[\bar{\chi}_{n, \omega}(0) \frac{\not \lambda}{4 N_{c}} \chi_{n, \omega^{\prime}, 0_{\perp}}(x)\right] \\
& +\ldots
\end{aligned}
$$

Collinear:

$$
\begin{aligned}
& \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X} \vec{n}\langle 0| \chi_{n, \omega^{\prime}, 0_{\perp}}(x)|X \pi\rangle\langle X \pi| \bar{\chi}_{n, \omega}(0)|0\rangle=\quad \text { Fragmenting jet function } \\
& \quad=2 \delta_{\omega, \omega^{\prime}} \delta\left(x^{+}\right) \delta^{2}\left(x_{\perp}\right) \omega \int \frac{d k^{+}}{2 \pi} e^{-i k^{+} x^{-} / 2} \overline{\mathcal{G}}_{u}^{\pi}\left(k^{+} \omega, \frac{p_{\pi}^{-}}{\omega}, p_{\pi}^{+} p_{\pi}^{-}\right)
\end{aligned}
$$

$p^{-}=m_{b}-q^{-}=m_{b}-m_{B}+p_{X}^{-}=p_{X \pi}^{-}-\bar{\Lambda}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}}\right) \Rightarrow z=\frac{p_{\pi}^{-}}{\omega} \simeq \frac{p_{\pi}^{-}}{p_{X}^{-}}$

Usoft:

$f\left(l^{+}\right)=\frac{1}{2} \int \frac{d x^{-}}{4 \pi} e^{-i x^{-} l^{+} / 2}\left\langle\bar{B}_{v}\right| \bar{h}_{v}(\tilde{x}) Y(\tilde{x}, 0) h_{v}(0)\left|\bar{B}_{v}\right\rangle, \quad \tilde{x}^{\mu}=\bar{n} \cdot x n^{\mu} / 2$

SC ET factorization

Projecting out the scalar functions $W_{i}=W_{\mu \nu} P_{i}^{\mu \nu}$:

$$
\begin{aligned}
W_{i}^{(0)} & =\frac{h_{i}(\mu)}{\pi} p_{X \pi}^{-} \int_{0}^{p_{X \pi}^{+}} d k^{+} \overline{\mathcal{G}}_{u}^{\pi}\left(k^{+} p_{X \pi}^{-}, \frac{p_{\pi}^{-}}{p_{X \pi}^{-}}, p_{\pi}^{+} p_{\pi}^{-}, \mu\right) S\left(p_{X \pi}^{+}-k^{+}, \mu\right) \\
& =\frac{h_{i}(\mu)}{\pi} p_{X \pi}^{-} \int_{0}^{p_{X \pi}^{+}} d k^{\prime+} \overline{\mathcal{G}}_{u}^{\pi}\left(p_{X \pi}^{-}\left(p_{X \pi}^{+}-k^{\prime+}\right), \frac{p_{\pi}^{-}}{p_{X \pi}^{-}}, p_{\pi}^{+} p_{\pi}^{-}, \mu\right) S\left(k^{\prime+}, \mu\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& h_{i}=\sum_{j, j^{\prime}=1}^{3} C_{j^{\prime}}\left(m_{b}, p_{X \pi}^{-}, \mu\right) C_{j}\left(m_{b}, p_{X \pi}^{-}, \mu\right) \operatorname{Tr}\left[\frac{P_{v}}{2} \bar{\Gamma}_{j^{\prime} \mu}^{(0)} \frac{\not 2}{2} \Gamma_{j \nu}^{(0)}\right] P_{i}^{\mu \nu}, \quad S(p) \equiv f(\bar{\Lambda}-p) \\
& \frac{d^{4} \Gamma}{d p_{X \pi}^{+} d p_{X \pi}^{-} d p_{\pi}^{-} d p_{\pi}^{+}}=\Gamma_{0}\left[H\left(m_{B}, p_{X \pi}^{-}, p_{X \pi}^{+}, \mu\right) p_{X \pi}^{-}\right. \\
& \times \int_{0}^{p_{X \pi}^{+}} d k^{\prime+} \overline{\mathcal{G}}_{u}^{\pi}\left(p_{X \pi}^{-}\left(p_{X \pi}^{+}-k^{\prime+}\right), \frac{p_{\pi}^{-}}{p_{X \pi}^{-}}, p_{\pi}^{+} p_{\pi}^{-}, \mu S\left(k^{\prime+}, \mu\right)\right.
\end{aligned}
$$

Fragmenting jet function vo jet function

Consider $\frac{d^{2} \Gamma}{d m_{X \pi}^{2} d z}$ which involves $\mathcal{G}_{u}^{\pi}\left(k^{+} \omega, z, \mu\right) \equiv \omega \int d p_{\pi}^{+} \overline{\mathcal{G}}_{u}^{\pi}\left(k^{+} \omega, z, p_{\pi}^{+} p_{\pi}^{-}, \mu\right)$:

$$
\begin{aligned}
& \frac{1}{4 N_{c}} \operatorname{Tr} \int d p_{\pi}^{+} \sum_{X} \not \ddot{\lambda}\langle 0| \chi_{n, \omega^{\prime}, 0_{\perp}}(x)|X \pi\rangle\langle X \pi| \bar{\chi}_{n, \omega}(0)|0\rangle= \\
& \quad=2 \delta_{\omega, \omega^{\prime}} \delta\left(x^{+}\right) \delta^{2}\left(x_{\perp}\right) \int \frac{d k^{+}}{2 \pi} e^{-i k^{+} x^{-} / 2} \mathcal{G}_{u}^{\pi}\left(k^{+} \omega, \frac{p_{\pi}^{-}}{\omega}\right)
\end{aligned}
$$

cf. with

$$
\frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X_{u}}\langle 0| \not \ddot{\hbar} \chi_{n}(x)\left|X_{u}\right\rangle\left\langle X_{u}\right| \bar{\chi}_{n, \omega, 0_{\perp}}(0)|0\rangle=\delta\left(x^{+}\right) \delta^{2}\left(x_{\perp}\right) \omega \int d k^{+} e^{-i k^{+} x^{-} / 2} J_{u}\left(\omega k^{+}\right)
$$

$$
\sum_{h \in \mathcal{H}_{u}} \int d z \mathcal{G}_{j}^{h}\left(k^{+} p_{X h}^{-}, z, \mu\right)=2(2 \pi)^{3} J_{j}\left(k^{+} p_{X_{u}}^{-}, \mu\right)
$$

Replacement rule to obtain SCET factorization formulae for semi-inclusive processes !

$$
J_{j}\left(k^{+} \omega\right) \longrightarrow \frac{1}{2(2 \pi)^{3}} \mathcal{G}_{j}^{h}\left(k^{+} \omega, z\right) d z
$$

Relation with isagnentation function ID

In the SCET notation:

$$
D_{q}^{\pi}\left(\frac{p_{\pi}^{-}}{\omega}, \mu\right)=\frac{1}{z} \sum_{p_{\pi, \ell}^{\perp}} \int \mathrm{d}^{2} p_{\pi, r}^{\perp} \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X} \not{\not \partial}\langle 0|\left[\delta_{\omega, \overline{\mathcal{P}}} \delta_{0, \mathcal{P}_{\perp}} \chi_{n}(0)\right]|X \pi\rangle\langle X \pi| \bar{\chi}_{n}(0)|0\rangle
$$

vs. $\quad \mathcal{G}_{q}^{\pi}\left(k^{+} \omega, \frac{p_{\pi}^{-}}{\omega}, \mu\right)=\frac{1}{2 \pi p_{\pi}^{-}} \sum_{p_{\pi, \ell}^{\perp}} \int \mathrm{d}^{2} p_{\pi, r}^{\perp} \int \mathrm{d}^{4} x e^{i k^{+} x^{-} / 2}$

$$
\times \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X} \not \vec{\lambda}\langle 0|\left[\delta_{\omega, \overline{\mathcal{P}}} \delta_{0, \mathcal{P}_{\perp}} \chi_{n}(x)\right]|X \pi\rangle\langle X \pi| \bar{\chi}_{n}(0)|0\rangle
$$

By performing an OPE (SCET I to SCET II matching):

$$
\mathcal{G}_{i}^{\pi}(s, z, \mu)=\sum_{j=u, d, g, \bar{u} \ldots} \int_{z}^{1} \frac{d x}{x} \mathcal{J}_{i j}\left(s, \frac{z}{x}, \mu\right) D_{j}^{\pi}(x, \mu)\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{s}\right)\right]
$$

A. Jain, M.P. and W. J. Waalewijn, in preparation

The partonic fragmentation function

$\hat{D}_{q}^{G}\left\{z=\frac{p^{-}}{\omega}, \mu\right)=\frac{1}{z} \sum_{p_{\pi, \ell}^{\perp}} \int \mathrm{d}^{2} p_{\pi, r}^{\perp} \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X} \not \ddot{n}^{\perp}\langle 0|\left[\delta_{\omega, \overline{\mathcal{P}}} \delta_{0, \mathcal{P}_{\perp}} \chi_{n}(0)\right]\left|X q_{n}(p)\right\rangle\left\langle X q_{n}(p)\right| \bar{\chi}_{n}(0)|0\rangle$at tree level: $\hat{D}_{q}^{q}(z)=\delta(1-z)$at one loop (Feynman gauge):

using dim. reg. and $\overline{\mathrm{MS}}$ scheme:

$$
\gamma_{q q}^{D}(z, \mu)=\frac{\alpha_{s}(\mu)}{\pi} \theta(1-z) \theta(z) P_{q q}(z), \quad \gamma_{q g}^{D}(z, \mu)=\frac{\alpha_{s}(\mu)}{\pi} \theta(1-z) \theta(z) P_{g q}(z)
$$

The partonic fragmenting jet function

$\hat{\mathcal{G}}_{q}^{q}\left(s=k^{+} \omega, \frac{p^{-}}{\omega}, \mu\right)=\frac{1}{2 \pi p^{-}} \sum_{p_{\pi, \ell}^{\perp}} \int \mathrm{d}^{2} p_{\pi, r}^{\perp} \int \mathrm{d}^{4} x e^{i k^{+} x^{-} / 2}$

$$
\times \frac{1}{4 N_{c}} \operatorname{Tr} \sum_{X} \not{n}\langle 0|\left[\delta_{\omega, \overline{\mathcal{P}}} \delta_{0, \mathcal{P}_{\perp}} \chi_{n}(x)\right]\left|X q_{n}(p)\right\rangle\left\langle X q_{n}(p)\right| \bar{\chi}_{n}(0)|0\rangle
$$

at tree level: $\hat{\mathcal{G}}_{q}^{q}(s, z, \mu)=2(2 \pi)^{3} \delta(s) \delta(1-z)$at one loop (Feynman gauge):

check: anomalous dimension of $\mathcal{G}_{q}=$ anomalous dimension of the quark jet function J_{q}evolution changes only virtuality (no quark/gluon mixing, no change in z)

The matching coefficients up to one loop

$$
\mathcal{G}=\mathcal{J} \otimes D
$$at tree level: $\mathcal{J}_{q q}^{(0)}(s, z, \mu)=2(2 \pi)^{3} \delta(s) \delta(1-z), \mathcal{J}_{q g}^{(0)}=0$

at one loop: checked that the IR divergences in \mathcal{G} and D match up and

$$
\begin{aligned}
\mathcal{J}_{q q}^{(1)}(s, z, \mu) & =\mathcal{G}_{q}^{q,(1)}(s, z, \mu)-2(2 \pi)^{3} \delta(s) D_{q}^{q,(1)}(z, \mu) \\
\mathcal{J}_{q g}^{(1)}(s, z, \mu) & =\mathcal{G}_{q}^{g,(1)}(s, z, \mu)-2(2 \pi)^{3} \delta(s) D_{q}^{g,(1)}(z, \mu)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{J}_{q q}^{(1)}(s, z, \mu)= & \frac{\alpha_{s} C_{F}}{2 \pi} \theta(1-z) \theta(z)\left\{\frac{2}{\mu^{2}}\left(\frac{\theta\left(s / \mu^{2}\right) \ln s / \mu^{2}}{s / \mu^{2}}\right)_{+} \delta(1-z)+\frac{1}{\mu^{2}}\left(\frac{\theta\left(s / \mu^{2}\right)}{s / \mu^{2}}\right)_{+} \frac{1+z^{2}}{(1-z)_{+}}+\right. \\
& \left.\delta(s)\left[\ln z\left(\frac{1+z^{2}}{1-z}\right)_{+}+2 z\left(\frac{\log (1-z)}{1-z}\right)_{+}-\frac{\pi^{2}}{6} \delta(1-z)+(1-z)(1+\ln (1-z))\right]\right\} \\
\mathcal{J}_{q g}^{(1)}(s, z, \mu)= & 2(2 \pi)^{2} \alpha_{s} C_{F} \theta(1-z) \theta(z)\left\{\frac{2-2 z+z^{2}}{z}\left[\frac{1}{\mu^{2}}\left(\frac{\theta\left(s / \mu^{2}\right)}{s / \mu^{2}}\right)_{+}+\delta(s) \ln (z(1-z))\right]+z \delta(s)\right\}
\end{aligned}
$$

D iron dlifierentlal B-elecay retes

If $\omega \in[0, \Delta]$ with $\Delta \gg \Lambda_{\mathrm{QCD}}$

$$
S(\omega)=\int_{0}^{\infty} d \omega^{\prime} \underbrace{C_{0}\left(\omega-\omega^{\prime}\right)}_{\text {pert. }} \underbrace{F\left(\omega^{\prime}\right)}_{\text {non-pert. }}
$$

$C_{0}\left(p_{X \pi}^{+}-k^{+}-\omega^{\prime}\right)=C_{0}\left(p_{X \pi}^{+}-k^{+}\right)-\omega^{\prime} C_{0}^{\prime}\left(p_{X \pi}^{+}-k^{+}\right)+\ldots$
$\int_{0}^{\infty} d \omega^{\prime} F\left(\omega^{\prime}\right)=1$ and $\int_{0}^{\infty} d \omega^{\prime} \omega^{\prime n} F\left(\omega^{\prime}\right)=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{n}\right)$
Hence, if $p_{X \pi}^{+\min } \gg \Lambda_{\mathrm{QCD}}, p_{X \pi}^{+\max } \ll p_{X \pi}^{-}$, at leading-order in $\Lambda_{\mathrm{QCD}} / p_{X \pi}^{+}$-expansion:

$$
\begin{aligned}
& \begin{array}{c}
\frac{d^{2} \Gamma^{\mathrm{cut}}}{d m_{X \pi}^{2} d z}=\Gamma_{0} \sum_{j=u, \bar{u}, d, g \ldots} \int_{z}^{1} \frac{d x}{x} D_{j}^{\pi}(x, \mu)\binom{\int_{m_{X \pi}^{2} / m_{B}}^{m_{X \pi}} d p_{X \pi}^{+} \frac{m_{X \pi}^{2}}{\left(p_{X \pi}^{+}\right)^{2}} H\left(m_{B}, \frac{m_{X \pi}^{2}}{p_{X \pi}^{+}}, p_{X \pi}^{+}, \mu\right)}{\times \int_{0}^{p_{X \pi}^{+}} d k^{+} \mathcal{J}_{u j}\left(k^{+} \frac{m_{X \pi}^{2}}{p_{X \pi}^{+}}, \frac{z}{x}, \mu\right) C_{0}\left(p_{X \pi}^{+}-k^{+}, \mu\right)} .
\end{array} \\
& \hat{H}_{u j}\left(m_{B}, m_{X \pi}^{2}, \frac{z}{x}, \mu\right) \quad \text { perturbative }
\end{aligned}
$$

Conclusions

Derived leading-order SCET factorization formulae for differential decay rates in $\bar{B} \rightarrow X h \ell \bar{\nu}$ in the endpoint region with h light, energetic and fragmenting from a u-quark jet whose invariant mass is measured

Defined a fragmenting jet function $\mathcal{G}_{j}^{h}\left(k^{+} \omega, z\right)$ which incorporates information about the invariant mass of the jet, at variance with the standard fragmentation function $D_{j}^{h}(z)$

The relation between $\mathcal{G}_{j}^{h}\left(k^{+} \omega, z\right)$ and the jet function $J_{j}(s)$ leads to a simple replacement rule to obtain SCET factorization formulae for semi-inclusive processes with jet fragmentation from the corresponding inclusive caseThe matching of $\mathcal{G}_{j}^{h}\left(k^{+} \omega, z\right)$ onto $D_{j}^{h}(z)$ opens up the possibility to measure fragmentation functions in new processes, like B-decays

Additional slides

Further LO SCETr factorization formulae

- $\bar{B} \rightarrow X K \gamma$:

$$
\begin{aligned}
& \frac{d^{2} \Gamma}{d E_{\gamma}(d z)}=\frac{\Gamma_{0 s} m_{b}}{(2 \pi)^{3}} H_{s}\left(p_{X K}^{+}, \mu\right) \int_{0}^{p_{X K}^{+}} d k^{+} \mathcal{G}_{s}^{K}\left(k^{+} m_{b}, z, \mu\right) S\left(p_{X K}^{+}-k^{+}, \mu\right) \\
& =\frac{\Gamma_{0 s} m_{b}}{(2 \pi)^{3}} H_{s}\left(p_{X K}^{+}, \mu\right) \sum_{j} \int_{0}^{p_{X K}^{+}} d k^{+} \int_{z}^{1} \frac{d x}{x} \mathcal{J}_{s j}\left(k^{+} m_{b}, \frac{z}{x}, \mu\right) D_{j}^{K}(x, \mu) S\left(p_{X K}^{+}-k^{+}, \mu\right)
\end{aligned}
$$

$e^{+} e^{-} \rightarrow$ (dijets) $+h$:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d \bar{M}^{2} d z}= & \frac{\sigma_{0}}{2(2 \pi)^{3}} H_{2 \mathrm{jet}}(Q, \mu) \int_{-\infty}^{+\infty} d l^{+} d l^{-}\left[\mathcal{G}_{q}^{h}\left(M^{2}-Q l^{+}, z, \mu\right) J_{\bar{n}}\left(\bar{M}^{2}-Q l^{-}, \mu\right)+\right. \\
& \left.J_{n}\left(M^{2}-Q l^{+}, \mu\right) \mathcal{G}_{\bar{q}}^{h}\left(\bar{M}^{2}-Q l^{-}, z, \mu\right)\right] S_{2 \mathrm{jet}}\left(l^{+}, l^{-}, \mu\right) \\
= & \frac{\sigma_{0}}{2(2 \pi)^{3}} H_{2 \mathrm{jet}}(Q, \mu) \\
& \times \sum_{j} \int_{-\infty}^{+\infty} d l^{+} d l^{-} \int_{z}^{1} \frac{d x}{x}\left[\mathcal{J}_{q j}\left(M^{2}-Q l^{+}, \frac{z}{x}, \mu\right) J_{\bar{n}}\left(\bar{M}^{2}-Q l^{-}, \mu\right)+\right. \\
& \left.J_{n}\left(M^{2}-Q l^{+}, \mu\right) \mathcal{J}_{\bar{q} j}\left(\bar{M}^{2}-Q l^{-}, \frac{z}{x}, \mu\right)\right] D_{j}^{h}(x, \mu) S_{2 \mathrm{jet}}\left(l^{+}, l^{-}, \mu\right)
\end{aligned}
$$

