Non-local $1/m_b$ corrections to $\bar{B} \to X_s \gamma$

Michael Benzke

SCET workshop, Ringberg Castle, Munich April 9, 2010

In collaboration with S. J. Lee, M. Neubert, G. Paz

Michael Benzke (JGU)

Subleading Corrections to $B \rightarrow X_{s'}$

Abstract

What is this talk about?

The decay rate of $\overline{B} \to X_s \gamma$ is considered. Subleading contributions in the $\frac{1}{m_b}$ expansion obey a new factorization formula which introduces a new type of soft function, that is not perturbatively calculable. Their effect on the partially integrated rate is estimated.

Based on arXiv:1003.5012

Motivation

- The radiative decay $\bar{B} \to X_s \gamma$ is a loop level effect in the Standard Model
 - \rightarrow Probe for new physics
- To eliminate experimental background a lower cut on the photon energy is introduced
 - \rightarrow Theoretical analysis must be performed in this endpoint region

 \to Jet X_s has a large energy $\mathcal{O}(m_b)$ but small invariant mass $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$

- The appropriate effective field theories are therefore SCET (hc, hc, s) and HQET
 - C. W. Bauer et al. '01
 - \rightarrow Expansion in small parameter $\lambda \sim \frac{\Lambda_{\rm QCD}}{m_b}$

Subleading Shape Functions

 2004: Using SCET, study of one type of power corrections subleading shape functions (subleading "twist") for X_u l ν̄ and Q_{7γ} − Q_{7γ} contribution to B̄ → X_sγ

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

(K.S.M. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04)

Supersedes earlier studies

• The subleading shape function s_i are non perturbative

known at tree level: $\sum_i H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$

SCET 2010 - Subleading Jet Functions in Inclusive B Decays - Gil Paz

Subleading Shape Functions

 2004: Using SCET, study of one type of power corrections subleading shape functions (subleading "twist") for X_u l ν̄ and Q_{7γ} - Q_{7γ} contribution to B̄ → X_sγ dΓ ~ H · J ⊗ S + ¹/_{mb} ∑ H · J ⊗ s_i + ...

(K.S.M. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04)

Supersedes earlier studies

• The subleading shape function s_i are non perturbative

known at tree level: $\sum_{i} H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$

SCET 2010 - Subleading Jet Functions in Inclusive B Decays - Gil Paz

Calculation

• At leading power in $\frac{1}{m_{\rm b}}$ only one SCET operator contributes

At subleading power multiple diagrams are possible, e.g.

Calculation

• At leading power in $\frac{1}{m_b}$ only one SCET operator contributes

At subleading power multiple diagrams are possible, e.g.

SCET-Lagrangian insertion \rightarrow suppressed by another $\sqrt{\lambda}$

Michael Benzke (JGU)

Subleading Corrections to $\bar{B} \rightarrow X_s \gamma$

Calculation

- \blacksquare Decay rate \sim amplitude squared
- Leading power contribution to the decay rate:
 Interference of Q₇ with Q₇
- The Rate **factorizes** at leading power $d\Gamma^{\text{LO}} \sim H \cdot J \otimes S$

Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01

The hard function *H* and the jet function *J* are perturbative quantities, the shape function *S* is non-perturbative.
 The leading order shape function *S* is related to the measured photon spectrum

- Subleading contributions originating from the interference $Q_7 Q_7$ \rightarrow Gil Paz' talk
- But other operators of the weak effective Hamiltonian also contribute
- Some of them are suppressed by small Wilson coefficients or CKM elements

Important Operator combinations

$$egin{aligned} Q_1-Q_7, \ Q_7-Q_8 \ ext{and} \ Q_8-Q_8 \ (Q_1-Q_1 \ ext{and} \ Q_1-Q_8 \ ext{only appear at} \ \mathcal{O}\left(rac{1}{m_b^2}
ight)) \end{aligned}$$

- Distinguish contributions by their factorization properties
- 1. **Direct** photon contributions

 $\rightarrow \frac{\alpha_s}{m_b}$ in endpoint region

• Factorizes $d\Gamma \sim H \cdot j \otimes S$

with the subleading jet function \boldsymbol{j}

■ 2. Resolved photon contributions

(in this case double resolved)

- Factorizes $d\Gamma^{\rm res} \sim H \cdot J \otimes s \otimes \overline{J} \otimes \overline{J}$
- The J are new jet functions corresponding to the uncut hard-collinear propagators

2. **Resolved** photon contributions

- \blacksquare The subleading shape function ${\color{black}{s}}$ is a non-local HQET matrix element
- It cannot be separately extracted from the photon spectrum
- It is non-local in two light-cone directions
 - \rightarrow No OPE even in integrated rate
 - \rightarrow Hadronic uncertainty

Factorization Formula

In the endpoint region the rate factorizes

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum H \cdot j_i \otimes S + \frac{1}{m_b} \sum H \cdot J \otimes s_i + \frac{1}{m_b} \sum H \cdot J \otimes s_i \otimes \bar{J} + \frac{1}{m_b} \sum H \cdot J \otimes s_i \otimes \bar{J} \otimes \bar{J} + \mathcal{O}\left(\frac{1}{m_b^2}\right)$$

Visualize as

Consider all relevant combinations in turn

Michael Benzke (JGU)

• Non-perturbative contribution to total rate $\mathcal{O}\left(\frac{1}{m_c^2}\right)$ (Voloshin '96)

$$\frac{d\Gamma^{\rm res}}{dE_{\gamma}} \sim \frac{1}{m_b} \int d\omega \,\delta(\omega + p_+) \int \frac{d\omega_1}{\omega_1 + i\varepsilon} \left[1 - F\left(\frac{m_c^2}{2E_{\gamma}\omega_1}\right) \right] g_{17}(\omega, \omega_1)$$
$$g_{17}(\omega, \omega_1) = \int \frac{dr}{2\pi} e^{-i\omega_1 r} \int \frac{dt}{2\pi} e^{-i\omega t} \frac{1}{M_B} \langle \bar{B} | \bar{h}(\mathbf{tn}) \dots G_s^{\alpha\beta}(\mathbf{r\bar{n}}) \dots h(\mathbf{0}) | \bar{B} \rangle$$

• Expand F for $m_c \sim m_b \to$ Reproduce Voloshin term in total rate $\sim \frac{-\lambda_2}{9m_c^2}$

Michael Benzke (JGU)

- Estimate the possible contribution to the partial rate $\Gamma(E_0) = \int_{E_0} dE_{\gamma} \frac{d\Gamma}{dE_{\gamma}}$
- PT invariance implies that all considered subleading shape functions are real
- Moment constraints
 ∫ dω ∫ dω₁g₁₇(ω, ω₁) = 2λ₂
 ∫ dωω ∫ dω₁g₁₇(ω, ω₁) = -ρ₂
 Symmetry
 ∫ dωg₁₇(ω, ω₁) = ∫ dωg₁₇(ω, -ω₁)

$$h_{17}(\omega_1) = \int d\omega g_{17}(\omega, \omega_1) = \frac{2\lambda_2}{\sqrt{2\pi}} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$$

 $\rightarrow -1.7\ldots 4.0\,\%$ non-perturbative uncertainty due to Q_1-Q_7 contribution (possible correction to partonic rate)

$$\frac{d\Gamma^{\rm res}}{dE_{\gamma}} \sim \frac{e_s^2 8\pi \alpha_s}{m_b} \int d\omega \,\delta(\omega + p_+) \int \frac{d\omega_1}{\omega_1 + i\varepsilon} \int \frac{d\omega_2}{\omega_2 - i\varepsilon} g_{88}(\omega, \omega_1, \omega_2)$$
$$g_{88}(\omega, \omega_1, \omega_2) = \frac{1}{M_B} \langle \bar{B} | \bar{h}(\mathsf{tn}) \dots s(\mathsf{tn} + \mathsf{u\bar{n}}) \bar{s}(\mathsf{r\bar{n}}) \dots h(\mathbf{0}) | \bar{B} \rangle_{\mathrm{F.T.}}$$

$$\frac{d\Gamma^{\rm res}}{dE_{\gamma}} \sim \frac{e_s^2 8\pi\alpha_s}{m_b} \int d\omega \,\delta(\omega + p_+) \int \frac{d\omega_1}{\omega_1 + i\varepsilon} \int \frac{d\omega_2}{\omega_2 - i\varepsilon} g_{88}(\omega, \omega_1, \omega_2)$$
$$g_{88}(\omega, \omega_1, \omega_2) = \frac{1}{M_B} \langle \bar{B} | \bar{h}(\mathbf{tn}) \dots s(\mathbf{tn} + \mathbf{un}) \bar{s}(\mathbf{rn}) \dots h(\mathbf{0}) | \bar{B} \rangle_{\rm F.T.}$$

Important subtlety

$$\frac{d\Gamma^{\rm res}}{dE_{\gamma}} \sim \frac{e_s^2 8\pi\alpha_s}{m_b} \int d\omega \,\delta(\omega + p_+) \int \frac{d\omega_1}{\omega_1 + i\varepsilon} \int \frac{d\omega_2}{\omega_2 - i\varepsilon} g_{88}(\omega, \omega_1, \omega_2)$$
$$g_{88}(\omega, \omega_1, \omega_2) = \frac{1}{M_B} \langle \bar{B} | \bar{h}(\mathsf{tn}) \dots s(\mathsf{tn} + \mathsf{u\bar{n}}) \bar{s}(\mathsf{r\bar{n}}) \dots h(\mathbf{0}) | \bar{B} \rangle_{\mathrm{F.T.}}$$

Consider scale dependence of direct contribution

$$\frac{d\Gamma^{\rm dir}}{dE_{\gamma}} \sim \frac{e_s^2 C_F \alpha_s}{4\pi m_b} \int d\omega \bigg(2 \ln \frac{m_b(\omega + p_+)}{\mu^2} + 1 \bigg) \frac{S(\omega)}{s(\omega)}$$

- How does the scale dependence cancel?
- Consider the asymptotic form of g_{88} for $\omega_{1,2} \gg \Lambda_{\rm QCD}$

$$g_{88}(\omega,\omega_1,\omega_2) \rightarrow \frac{C_F}{(4\pi)^{2-\epsilon}} \frac{\theta(\omega_1)\omega_1^{1-\epsilon}}{\Gamma(1-\epsilon)} \delta(\omega_1-\omega_2) \int_{\omega} d\omega' S(\omega')(\omega'-\omega)^{-\epsilon} + \dots$$

Convolution integral is UV divergent!

 \rightarrow Introduce cutoff and consider high and low momentum part of the convolution separately

$$\frac{d\Gamma^{\rm res}}{dE_{\gamma}} \sim \frac{e_s^2 8\pi \alpha_s}{m_b} \int d\omega \,\delta(\omega + p_+) \int^{\Lambda} \frac{d\omega_1}{\omega_1 + i\varepsilon} \int^{\Lambda} \frac{d\omega_2}{\omega_2 - i\varepsilon} g_{38}(\omega, \omega_1, \omega_2) \\ - \frac{e_s^2 C_F 8\pi \alpha_s}{2\pi^2 m_b} \int d\omega \left(\ln \frac{\Lambda(\omega + p_+)}{\mu^2} + 2 \right) S(\omega)$$

 \rightarrow Scale dependence cancels

Interference of $Q_8 - Q_8$ - Numerical Estimate

• This time no moment constraint for g_{88}

 \to Assume that the convolution of jet and shape function yields a value of ${\cal O}(\Lambda_{\rm QCD})$

• But suppressed by e_s^2

 $\rightarrow -0.3 \dots 1.9\,\%$ non-perturbative uncertainty due to ${\it Q}_8 - {\it Q}_8$ contribution

$$\frac{d\Gamma^{\text{res}}}{dE_{\gamma}} \sim \frac{\alpha_s}{m_b} \int d\omega \,\delta(\omega + p_+) \int d\omega_1 \int \frac{d\omega_2}{\omega_1 - \omega_2 + i\varepsilon} \\ \left[\left(\frac{1}{\omega_1 + i\varepsilon} + \frac{1}{\omega_2 - i\varepsilon} \right) g_{78}^{(1)}(\omega, \omega_1, \omega_2) - \left(\frac{1}{\omega_1 + i\varepsilon} - \frac{1}{\omega_2 - i\varepsilon} \right) g_{78}^{(5)}(\omega, \omega_1, \omega_2) \right] \\ g_{78}^{(i)}(\omega, \omega_1, \omega_2) = \frac{1}{M_B} \langle \bar{B} | \bar{h}(\mathbf{tn}) \dots h(\mathbf{0}) \sum_q e_q \bar{q}(\mathbf{r} \bar{\mathbf{n}}) \dots q(\mathbf{u} \bar{\mathbf{n}}) | \bar{B} \rangle_{\text{F.T.}}$$

 Due to the sum over flavors it is possible to roughly estimate the effects through vacuum insertion approximation

Lee, Neubert, Paz '06

$$\int d\omega \, g_{78}^{(i)}(\omega,\omega_1,\omega_2)|_{\rm VIA} = -e_{\rm spec} \frac{f_B^2 M_B}{8} \left(1 - \frac{1}{N_c^2}\right) \phi^B(-\omega_1) \phi^B(-\omega_2)$$

 $\rightarrow -2.8\ldots -0.3\,\%$ non-perturbative uncertainty due to ${\it Q}_7-{\it Q}_8$ contribution

- Alternatively it is possible to relate the effect to the measured isospin asymmetry
- Wigner-Eckart Theorem

$$egin{aligned} &\langle ar{B} | ar{h}(tn) \dots h(0) \sum_q e_q ar{q}(rar{n}) \dots q(uar{n}) |ar{B}
angle \ &= & rac{1}{6} \Lambda_0 \pm rac{1}{2} \Lambda_1 = rac{1}{6} (\Lambda_0 - \Lambda_1) + e_{ ext{spec}} \Lambda_1 \end{aligned}$$

 \blacksquare Isospin asymmetry $\Delta_{0-}\sim\Lambda_1;$ averaged rate $\Gamma^{\rm avg}\sim\Lambda_0$

•
$$SU(3)$$
 symmetry $\rightarrow \Lambda_0 = \Lambda_1$

M. Misiak '09

 $\rightarrow -4.4\ldots 5.6~\%$ non-perturbative uncertainty for an SU(3) breaking of 30 %

Can be reduced by improved measurement of isospin asymmetry

Michael Benzke (JGU)

Summary - The Numbers

_

Operators	Effect
$Q_1 - Q_7$	$-1.7\ldots4.0\%$
$Q_8 - Q_8$	$-0.3 \dots 1.9$ %
$Q_7 - Q_8^{\sf VIA}$	$-2.8 \dots -0.3$ %
$Q_7 - Q_8^{exp}$	$-4.4 \dots 5.6$ %

Summary

(

- In order to estimate the non-perturbative uncertainty in the $\bar{B} \rightarrow X_s \gamma$ branching ratio the subleading order of the power expansion in $\frac{1}{m_b}$ must be considered
- At this order the decay rate obeys a new factorization formula

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum H \cdot j_i \otimes S + \frac{1}{m_b} \sum H \cdot J \otimes s_i + \frac{1}{m_b} \sum H \cdot J \otimes s_i \otimes \bar{J} + \frac{1}{m_b} \sum H \cdot J \otimes s_i \otimes \bar{J} \otimes \bar{J} + \mathcal{O}\left(\frac{1}{m_b^2}\right)$$

- Effects of the new non-local matrix elements can only be estimated
- A careful consideration of everything we know yields a non-perturbative uncertainty of ±5 % to the partial decay rate

Open questions:

 $\cdot\,\text{CP}$ violation due to new jet functions

 \cdot Effect of the SSF on the spectrum (determination of HQET parameters)

Thank you for your attention!

Michael Benzke (JGU)