

Why search for doubly charged Higgs?

1±

- Standard Model Higgs Boson is a spinless neutral particle with a vacuum expectation value v_0
- Neutrino oscillation \rightarrow Neutrino must have mass → **Origin**??
- Doubly charged Higgs bosons can be introduced to explain the origin of neutrino mass!
- Can decay to a pair of same-sign leptons
 - violation of lepton flavour by two units

Feynman diagrams for several doubly charged Higgs production channel. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity $36.1 f b^{-1}$ collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV.
- Only pair production via the Drell–Yan process was considered.
- Masses studied: $200 \leq m_{H^{\pm\pm}} \leq 1300~{\rm GeV}$
- Only e and μ were considered.
- No significant excess was observed, but lower mass limits were presented (450 GeV for $B(H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}) = 10\%$).
- Only thing that has not been done is hadronic decay of τ (leptonic decay of τ is reconstructed as e or μ).

Drell-Yan pair production

Backgrounds of same-charge hadronic tau

Prompt

Non-prompt

Real taus from non-prompt decays, e.g. from heavy flavored mesons Jets mis-reconstructed as taus

Charge-flip

Oppositely charged leptons with charge of tau misidentified:

 Z/γ^* , $t\bar{t}$, tW, $W^{\pm}W^{\mp}$

Narrow jet with 1 or 3 prongs (charged particles)

Can be distinguished, but there is some chance of misreconstruction.

Backgrounds

Prompt

Same-charge taus from SM processes: diboson ($W^{\pm}W^{\pm}/ZZ/$ WZ) and $t\bar{t} X$ processes ($t\bar{t} W$, $t\bar{t} Z$, and $t\bar{t} H$) W^{\pm}/Z \overline{q} q d W^+

Non-prompt

Real leptons from non-prompt decays, e.g. from heavy flavored mesons Jets mis-reconstructed as taus

Hadronic tau charge-flip background studies

- Using three methods to perform charge-flip rate study of tau for MC and data.
- What we want at the end?
 - scale factor: ratio of the charge-flip rate between MC and data
 - apply the scale factor to the simulated events to compensate for the differences
- Data-drive and tag-and-probe method
 - used in previous charge-flip study on electron for MC and data.
 - not working for tau data due to heavily contaminated background
- Template fit method
 - a new method designed for studying the hadronic tau charge-flip rate of data

Туре	Metho
MC	Data-driv
	Tag-an probe
Data	Template

od	Samples	Channel
ven	Ztautau ttbar	Ditau ($ au_{had} au_{had}$)
id- e	Ztautau ttbar	muTau ($ au_{\mu} au_{had}$)
e fit	2015-2017	muTau ($ au_{\mu} au_{had}$)
		CULAR * SIG CULAR RVAROUS RVAR

Data-driven method

• Assume Poissonian distribution for expected number of charge flipped events λ

$$P(N_{SS};\lambda) = \frac{\lambda^{N_{SS}}e^{-\lambda}}{N_{SS}!}$$

where λ is a function of the charge flip probability $\epsilon(p_T, \eta) = f(\eta) \cdot \sigma(p_T)$.

• The expected number of charge flipped events:

$$\lambda_{i,j} = \epsilon_i (1 - \epsilon_j) N_{AS}^{ij} + (1 - \epsilon_i) \epsilon_j N_{AS}^{ij}$$

$$\epsilon_i (p_{T_i}, \eta_i)$$

$$\tau_i$$

$$\epsilon_j (p_{T_i}, \eta_j)$$

Baseline	Di-tau ti
	Two tau point). E
	Tau p_T 2
ttbar sample	At least
Ztautau sample	No extra

Selections

rigger

is (BDT medium working Electron and muon veto

> 30 GeV, truth matched

one b-jet

a cuts for MC samples

Charge-flip rate for MC estimated by data-driven method

Tag-and-probe method

• Estimate the charge flip rate using following decay

$$Z/t\bar{t} \to \tau\tau \to \tau_{had}\tau_{\mu}$$

 Muon charge (the tag) is assumed to be reliably reconstructed to estimate the charge flip rate of tau (the probe)

$$\epsilon_{\tau_{had}} = \frac{N_{SS}}{N_{AS}}$$

• $\epsilon_{\tau_{had}}$ depends only on p_T or η due to consideration of statistics

	Sir
Baseline	Or me ve Mu 0.5
ttbar sample	At
Ztautau	Nc

Selections

- ngle muon trigger:
- ne muon and one tau (BDT edium working point). Electron to
- uon: *p_T* > 30 GeV, z0sintheta < 5, d0sig < 3.0
- u: $p_T > 30$ GeV, truth matched
- least one b-jet
- o extra cuts for MC samples

Charge-flip rate from tag-and-probe method

Comparison of charge-flip rate $\epsilon_{\tau_{had}}(\eta)$ between 1-prong and 3-prong

Difficulties in studying hadronic tau charge-flip rate for data illustrated using ttbar control region

Ztautau control region has worse statistics

Template fit method

- Choose to use **ttbar sample** and **muTau** $(\tau_{\mu}\tau_{had})$ channel to build the templates due the highest statistics it has
- $\epsilon_{ au_{had}}$ depends only on η
- Using muTau channel means that tau is always assumed to be the one with wrong charge, just like the tag-and-probe $\left(N_{data}^{AS}(\eta)\right)_{signal} \times \epsilon_{had}(\eta) = \left(N_{data}^{SS}(\eta)\right)_{signal}$
- The compositions of AS and SS raw data can be separate to two parts

$$N_{data}^{AS}(\eta_i) = N_{signal}^{AS}(\eta_i) + N_{bck}^{AS}(\eta_i)$$
$$N_{data}^{SS}(\eta_i) = N_{signal}^{SS}(\eta_i) + N_{bck}^{SS}(\eta_i)$$

Baseline	Singl
	One medi veto
	Muo 0.5, c Tau: j isoTa
ttbar control	Tau: GeV
region	At lea

Selections

- e muon trigger
- muon and one tau (BDT ium working point). Electron
- n: $p_T > 30$ GeV, z0sintheta < d0sig < 3.0 $p_T > 30$ GeV, medium wp,
- u, hadronic tau
- $p_T > 50$ GeV, muon: $p_T > 50$

ast one b-jet

Charge flip rate for data and scale factor

Conclusion and current status

- The ATLAS detector at LHC is currently used to search for doubly charged Higgs bosons using same-charge hadronic tau channel.
- Charge-flip rate of hadronic tau ϵ_{had} for MC and data have been studied.
- ϵ_{had} depends weakly on p_T and strongly on η .
- The charge-flip background is not a dominant background. Only 0.5 2% for $|\eta|$ ranging from 0 to 2.5.
- The scale factor is derived to be around 2 ± 0.5 .
- Currently study the cause of charge-flip rate using event display

Backup slides

Why search for doubly charged Higgs?

- Doubly charged Higgs bosons can arise in various BSM theories
 - Left-right symmetric models, little Higgs model, type-Il seesaw models, ...
- Appear in $SU(2)_L$ triplet for almost all the models studied

$$\Delta = \begin{pmatrix} H^+/\sqrt{2} & H^{++} \\ H^0 = \frac{1}{\sqrt{2}}(\delta + \nu_{\Delta} + i\eta) & -H^+/\sqrt{2} \end{pmatrix}$$

The Yukawa interaction term

$$-Y_{\nu}\overline{l_L^c}i\sigma_2\Delta l_L + h.c.$$

and the neutrinos acquire a Majorana mass

$$M_{\nu} = \sqrt{2} Y_{\nu} v_{\Delta} \approx Y_{\nu} \frac{\mu v_0^2}{M_{\Delta}^2}$$

- Can decay to a pair of same-sign leptons which are rare in SM
 - Signal violation of lepton flavour by two units

$$q$$
 \overline{q}
 γ/Z

Feynman diagrams for several doubly charged Higgs production channel. arXiv:1105.1379v1

Dominant Drell-Yan pair production

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of $H^{\pm\pm}$ is $B(H^{\pm\pm} \to l^{\pm}l'^{\pm}) + B(H^{\pm\pm} \to X) = 100\%$, while "X" does not enter any of the SRs. Only e and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$\Gamma(H^{\pm\pm} \to l^{\pm}l'^{\pm}) = \frac{1}{1+\delta_{ll'}} \frac{\left|\tilde{Y}_{ll'}\right|^2 m_{H^{\pm\pm}}}{16\pi}, \ \tilde{Y}_{ll'} = \begin{cases} 2Y_{ll'} & l=l' \\ Y_{ll'} & l\neq l' \end{cases}$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300 \text{ GeV}$ $\left|\tilde{Y}_{ll'}\right|^2 = 2\left|m_{\nu}^{ij}\right|^2 / v_{\Delta}^2$

Branching ratios of $H^{\pm\pm}$ into different final states vs. mass of $H^{\pm\pm}$ for $v_{\Lambda} = 1$ GeV, $Y_{ll} = 0.01$. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of H^{±±} is B(H^{±±} → l[±]l'[±]) + B(H^{±±} → X) = 100%, while "X" does not enter any of the SRs. Only *e* and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$\Gamma(H^{\pm\pm} \to l^{\pm}l'^{\pm}) = \frac{1}{1+\delta_{ll'}} \frac{\left|\tilde{Y}_{ll'}\right|^2 m_{H^{\pm\pm}}}{16\pi}, \ \tilde{Y}_{ll'} = \begin{cases} 2Y_{ll'} & l=l'\\ Y_{ll'} & l\neq l' \end{cases}$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300 \text{ GeV}$ $|\tilde{Y}_{ll'}|^2 = 2|m_{\nu}^{ij}|^2/v_{\Delta}^2$

 $\rightarrow ab)$

 $Br(H^{++}$

Branching ratios of $H^{\pm\pm}$ into different final states vs. vacuum expectation value. arXiv:1611.09594v2

arXiv: 1710.09748v1

Closure test for the MC charge flip rate

Tag-and-probe method

Selections

1D charge-flip rate with prongness from ttbar

Tau Charge-flip rate for data

• Use recommended selections for Z and ttbar control regions

	Selections
Baseline	Single muon trigger
	One muon and one tau. Electron vet
	Muon: $p_T > 30$ GeV, medium wp, Fi z0sintheta < 0.5, d0sig < 3.0 Tau: $p_T > 30$ GeV, medium wp, isoT
Z control region	$m_T(\mu, E_T^{miss}) = \sqrt{2p_T(\mu)E_T^{miss}(1 - \cos \theta)}$
	$\cos \Delta \Phi(\mu, E_T^{miss}) + \cos \Delta \Phi(\tau, E_T^{miss})$
ttbar control region	Tau: $p_T > 50$ GeV, muon: $p_T > 50$ G
	At least one b-jet

0

ixedCutTightTrackOnly,

au, hadronic tau

 $\Delta\Phi(\mu, E_T^{miss})) < 50 \text{ GeV}$

(5) > 0.5δeV

Why choose mu tau channel for template fit

 $m_{H^{\pm}} = 700 \; GeV$

- -SMT_al1TAU_BDTLoose_eBDTLoose
- -SMT_al1TAU_BDTMedium_eBDTTight
- BASELINE
- -SMT_al1TAU_BDTLoose_eBDTTight
- -SMT_al1TAU_BDTTight_eBDTTight
- SMT_al1TAU_BDTMedium_eBDTMedium
- -SMT_al1TAU_BDTTight_eBDTLoose
- SMT_al1TAU_BDTMedium_eBDTLoose
- -SMT_al1TAU_BDTTight_eBDTMedium
- SMT_al1TAU_BDTLoose_eBDTMedium

Attempts to reduce the background

• A lot of efforts were spent on studying the correlations and distributions of tau and jet kinematic variables, but it seems that the BDT has already done a good job with selecting events with same topology

Template fit method

- Need to find optimum values for the parameter a, b, c, d:
 - $N_{data}^{AS}(\eta_{i}) = a \cdot TMPL\left(N_{signal}^{AS}(\eta_{i})\right) + b \cdot TMPL\left(N_{bck}^{AS}(\eta_{i})\right)$ $N_{data}^{SS}(\eta_{i}) = c \cdot TMPL\left(N_{signal}^{SS}(\eta_{i})\right) + d \cdot TMPL\left(N_{bck}^{SS}(\eta_{i})\right)$

Our group

		Members
Jozef Stefan Institute		Miha Muškinja
		Tadej Novak
		Andrej Gorišek
		Borut Kerševan
		Marko Mikuž
The University Of Melbourne		Federico Scutti
		Frank Zhang
Lund University		Katja Mankinen
		Else Lytken
		Shi Qiu
		Simon Arnling Bååth
Universita e INFN, Bologna		Giulia Ucchielli
		Matteo Franchini
		Antonio Sidoti
		Max Sioli
		Giuseppe Carratta
	Analysis	Contact
	Type III Seesaw (conf)	Tadej Novak
	Doubly Charged Higgs	Katja Mankinen, Federico Scutti
	Same-Sign Heavy Neutrino (2015+2016)	Miha Muskinja, Giulia Ucchielli
	Heavy Lepton Multiplet	Matteo Franchini, Tadej Novak

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/SameSignClusterRun2

