

Paola Giovannini MPI Top Meeting

TOP MASS MEASUREMENT IN THE ALL HADRONIC TTBAR CHANNEL

Ap. Ag > tt

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

OUTLINE

all-hadronic ttbar channel and QCD multi jet events

- ✓ trigger focus:
 - preliminary studies at an event generator level with Pythia
 - determine efficiency of existing multi jet triggers
 - develop new ones that can stand higher lumi
- ✓ top reconstruction:
 - use of b-tagging to start with
 - develop an efficient technique for signal extraction and reconstruction
 - mass measurement → fit? template? TMVA?

ALL HADRONIC TTBAR CHANNEL

I'm looking into the all-hadronic ttbar channel:

- highest BR (46%) → large statistics
- full event reconstruction
- large combinatorial background (90/event)
- huge QCD background

P. Giovannini, MPI Top Meeting 10/19/09

QCD MULTI JET BACKGROUND

events with 6 high pT jets in the final state are a background to the all hadronic ttbar signal

in case of available b-tagging at a trigger level the signal from background separation will become easier

> SAME for offline

first first data only jet trigger are available HLT runs in pass-through mode

NEED TO UNDERSTAND SIGNAL AND BACKGROUND TOPOLOGY IN DETAIL, TO OPTIMIZE CUTS ON PT/ETA/N OF JETS

TRIGGER STUDIES WITH PYTHIA

	efficiency	sigma Pythia	eff. * sigma	S/B		
1J100 ttbar	5.46 10^-1	0.230 * 0.44 nb	5.5 10^-2 nb	5.7* 10^-5		ONE
1J100 QCD	1.34 10^-3	751619 nb	1 10^3 nb			JET
6J30 ttbar	2.5 10^-1	0.230 * 0.44 nb	2.5 10^-2 nb	1.2 * 10^-3	٦	
6J30 QCD	2.6 10^-5	751716 nb	20 nb			
6J35 ttbar	1.6 10^-1	0.232 * 0.44 nb	1.7 10^-2 nb	1.9 * 10^-3		
6J35 QCD	1.2 10^-5	752344 nb	9 nb			6
6J40 ttbar	1 10^-1	0.230 * 0.44 nb	1.1 10^-2 nb	3.0 * 10^-3	F	JETS
6J40 QCD	5 10^-6	752412 nb	3.8 nb			
6J45 ttbar	7.2 10^-2	0.231 * 0.44 nb	7.5 10^-3 nb	4.9 * 10^-3		
6J45 QCD	2.1 10^-6	751994 nb	1.6 nb			
6J204J40 ttbar	3.74 10^-1	0.230 * 0.44 nb	3.8 10^-2 nb	1.1* 10^-3		6 & 4
6J204J40 QCD	5 10^-5	752050 nb	3.76 10^1 nb			JETS

one jet trigger:: not efficient → in QCD events the highest pT jet has a pT higher than in ttbar six-jets :: "flat" multi-jet triggers show a better S/B but a smaller signal efficiency: could be strongly biased by the event generator==> need full ME calculation!!

ATLAS TRIGGER

- multi jet menu trigger have to be base on LV1 trigger thresholds
- from June 09 (trigger menu meeting): LV1 jet trigger thresholds will change in order to avoid overlap of turn on regions [Gustavo Kertzscher]

$\left(\right)$	existing L1 thresholds	5	10	18	23	35	42	70	120
	proposed L1 thresholds	5	10	20	40	70	100	130	150

ATLAS TRIGGER

new menu LumiE31 implemented from production release 15.3.1.5 →

- used for mcO8 re-processing
- contains new jet thresholds
- contains some multi-jet triggers

test triggers ..?

jetTauEtmiss									
EF chain	PS	PT	STP	L2 chain	PS	PT	L1 item		L1 prescale
<u>3j20</u>	1	0	1	<u>3j15_test</u>	1	0	<u>3J10</u>		1
<u>3j40</u>	1	0	1	<u>3j30</u>	1	0	<u>3J20</u>		1
<u>3j60v2</u>	1	0	1	<u>3j30</u>	1	0	<u>3J20</u>		1
<u>3j80</u>	1	0	1	<u>3j60</u>	1	0	<u>3J40</u>		1
<u>4j20</u>	1	0	1	4j15_test	1	0	<u>4J10</u>		1
<u>4j30</u>	1	0	1	<u>4j20</u>	1	0	<u>4J10</u>		1
<u>4j40</u>	1	0	1	<u>4j30</u>	1	0	4 <u>J20</u>	-	1
<u>4j80</u>	1000	0	1	<u>4j60</u>	1000	0	<u>4J40</u>		1
1b40_2b20_3L1J10	1	0	1	1b40_2b20_3L1J10	1	0	<u>3J10</u>		1
1b40_2b20_3L1J20	1	0	1	1b40_2b20_3L1J20	1	0	<u>3J20</u>		1
1b40_2b20_4L1J10	1000	0	1	1b40_2b20_4L1J10	1000	0	4J10		1
1b40_3b20_4L1J10	1000	0	1	1b40_3b20_4L1J10	1000	0	<u>4J10</u>		1
1b40_2b20_4L1J20	1000	0	1	1b40_2b20_4L1J20	1000	0	<u>4J20</u>		1
<u>2b40_3L1J20</u>	1	0	1	<u>2b40_3L1J20</u>	1	0	<u>3J20</u>		1
<u>2b40_4L1J20</u>	1000	0	1	<u>2b40_4L1J20</u>	1000	0	<u>4J20</u>		1
<u>4j20_3j40_j60</u>	1000	0	1	<u>4j15_3j30_j40</u>	1000	0	4J10_3J20		1
<u>4j20_3j40_2j60</u>	1000	0	1	<u>4j15_3j30_2j40</u>	1000	0	<u>4J10_3J20</u>		1
<u>3j40_j80</u>	1000	0	1	<u>3j30_j60</u>	1000	0	<u>3J20_J40</u>		1
<u>3j20_j80</u>	1000	0	1	<u>3j15_j60</u>	1000	0	<u>3J10_J40</u>	J	1

I was asked to test.

ATLAS TRIGGER

Plan is:

- ✓ test efficiency of all of the multi jet triggers in the menu
- ✓ implement and test efficiency and estimate rate of new triggers:
 - ✓ valid for higher lumi
 - keep higher signal statistics at low lumi as well
 - ✓ test triggers inspired from pythia studies
 - ✓ Ignacio Aracena is already proposing XJY+JEZ triggers (discussion on JE def)
 - ✓ already tried to start BUT...:

MASS MEASUREMENT

I think (after looking at Marion's and Liv's thesis) that:

- cut based analysis WITH b-tagging is feasible
 - I would like to optimize it wrt AntiKt algos and LC jets
 - using b-tagging one could optimize the reconstruction with TMVA or others..
- cut based analysis WITHOUT b-tagging is VERY hard S/B= 1/1000..
- and if we don't have b-tagging yet, will we have a GOOD tune/ understanding of QCD background in terms of MC simulations?

Selection at the moment 25% efficiency
n_jets(pt>20 Gev)=> 6 (no el overlap!)
no isolated e or mu with pt>20 GeV

• no MET> 20 GeV

COULD IT BE BETTER?...

P. Giovannini, MPI Top Meeting 10/19/09

CONCLUSIONS

Some numbers at 10 TeV: integrated luminosity of 200 pb^-1
all-hadronic cross section (NNLO) 176 pb
35000 events * 0.5 (multi-jet selection efficiency) = 19000 signal ev
QCD background LO after trigger = 30000000 ev

LOTS OF WORK TO BE DONE !!!!!

TRIGGER STUDIES

Preliminary studies at event generator:

- used Pythia for both parton shower and hard process
- run jet algorithm on outgoing HADRONS (Kt4)
- applies multi-jet filters on the truth jets (|eta| < 3.2 as feasible at trigger level)
- simulate both QCD and ttbar production in this way, applying the same filters
 - running Pythia in ATLAS is quite easy
 - different parameters are easily tunable
 - no "a priori" filter applied
 - All the previous studies have been performed
 - with Pythia at 14 TeV ==> useful comparison at 10 TeV

 no detector description is included: vital for trigger studies
 Parton Shower Event generators are not providing the best theoretical description of multi-jet final states, because of soft and collinear approximation==> ALPGEN samples

BUT..

TRIGGER STUDIES

ALL samples (QCD and ttbar) generated with MC08_Pythia_Common.py:

- 1. sqrt(s)= 10 TeV
- 2. ckin[3] = 18. GeV == minimum allowed Pt value for the 2p-> 2p hard process
- 3. run number 105046 for QCD
- 4. run number 105204 for ttbar ==> Pythia meta-data cross section * all-had BR
- 5. statistics of 10^6 events/sample for QCD
- 6. Statistics of 10⁴ events/sample for ttbar

Results organized in tables:

- every row is a different sample (ttbar or QCD) with a specific filter applied
- efficiency== #events surviving the filter/#events generated
- sigma pythia == cross section of GENERATED events
- eff.* sigma == effective cross section AFTER filter, if no prescale ==>
- this is the trigger rate at L= 10^33 cm^-1 s^-1
- at L= 10^31 cm^-1 s^-1, this has to be multiplied by 10^-2
- S/B = signal / background ratio

TRIGGER STUDIES

the jet Pt cut of the multi-jet filter indicates the ACTUAL threshold applied

	efficiency	sigma Pythia	eff. * sigma	S/B
5J10_4J35_3J45_J60 ttbar	<mark>5.46 10^-1</mark>	0.230 * 0.44 nb	5.5 10^-2 nb	3.7* 10^-4
5J10_4J35_3J45_J60 QCD	<mark>2 10^-4</mark>	<mark>751619 nb</mark>	1.5 10^2 nb	
4J35_3J45_2J50_J60 ttbar	5.5 10^-1	0.228 * 0.44 nb	5.5 10^-2 nb	3.3 * 10^-4
4J35_3J45_2J50_J60 QCD	<mark>2.2 10^-4</mark>	751978 nb	1.7 10 [^] 2 nb	
4J45_J60 ttbar	<mark>4.1 10^-1</mark>	0.231 * 0.44 nb	4.1 10^-2 nb	5.5 * 10^-4
4J45_J60 QCD	1.0 10^-4	751305 nb	7.5 10^ 1 nb	
4J17_3J35 ttbar	8.22 10^-1	0.230 * 0.44 nb	8.4 10^-2 nb	7.5* 10^-5
4J17_3J35 QCD	1.45 10^-3	751682 nb	1.1 10^3 nb	

MULTI JET TRIGGER MENU FILTERS

ALPGEN SAMPLE TRUTH FILTER

P. Giovannini, MPI Top Meeting 10/19/09

PYTHIA PT CUT

Justification of the low PT cut at 18 GeV: the sigma*efficiency is stable up to 35 GeV!!

