Particle Physics with Accelerators and Natural Sources

01. Introduction & Recap: Particle Physics & Experiments

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) 29.04.2019

Dr. Frank Simon Dr. Bela Majorovits

Goal / Content of the Lecture

- The connections of particle and astro-particle physics
- Precision tests of the Standard Model of particle physics
- Dark Matter WIMPs and Axions
- Neutrinos in the cosmos, from accelerators and natural sources
- Precision experiments at accelerators and the physics of heavy quarks
- Gravitational waves

• We are open to other topics as well - just let me know!

Organisation

- Time and place:
 - Mondays, 14:00 16:00
 - Physik II, Seminarraum PH 127
- Prerequisites:
 - Introductory lecture to Particle, Nuclear & Astrophysics
- Exercise Classes: None
- Exams: On request contact me via email
- Slides (FS) / Lecture Notes (BM): Available on-line in MPP indico system https://indico.mpp.mpg.de/category/135/

If not done yet: please sign up in TUM Online!

Lecture Overview

29.04.	Introduction & Recap: Particle Physics & Experiments				
06.06.	Dark Matter axions and ALPs: Where do they come from?	B. Majorovits			
13.05.	Axions and ALPs detection	B. Majorovits			
20.05.	Dark Matter WIMPs - origin and searches				
27.05.	Precision Tests of the Standard Model	F. Simon			
03.06.	Neutrinos: Freeze out, cosmological implications, structure formation				
	Pentecost				
17.06.	Natural Neutrino Sources: What can we learn from them?	B. Majorovits			
24.06.	Accelerator Neutrinos	F. Simon			
01.07.	Precision Experiments with low-energy accelerators	F. Simon			
08.07.	Neutrinoless Double Beta Decay	B. Majorovits			
15.07.	Gravitational Waves	F. Simon			
22.07.	Physics with Flavor: Top and Bottom	F. Simon			

Topics Today

- Introduction & Reminder:
 - The Standard Models of Particle Physics and Cosmology
 - Open Questions
 - Experimental Strategies
- Experimental Tools
 - Interaction of particles with matter
 - Detection techniques
 - Selected detector examples

Introduction:

Our Understanding of Particle Physics and the Universe

From the very big to the very small

			Size	Mass
		Universe	10 ²⁶ m	10 ⁵² kg
The Grant		Galaxy	10 ²¹ m	10 ⁴¹ kg
Earth (and Mooe)		Solar system	10 ¹³ m	10 ³⁰ kg
		Earth	10 ⁷ m	10 ²⁴ kg
		Man	10 ⁰ m	10 ² kg
		Atom	10 ⁻¹⁰ m	10 ⁻²⁶ kg
		Nucleus	10 ⁻¹⁴ m	10 ⁻²⁶ kg
Atom Elektron Proton	Quarks	Nucleon	10 ⁻¹⁵ m	10 ⁻²⁷ kg
Kern Neutron	0	Quarks, Leptons	<10 ⁻¹⁸ m	10 ⁻³⁰ kg

"Astroteilchenphysik in Deutschland", http://www.astroteilchenphysik.de/, und darin angegebene Referenzen

Mater

Fundamental Forces

- Four known Forces
 - Gravitation governs our every-day life, evolution of the Universe
 - It is irrelevant on the scales of particle physics

Gravitation	elektromag. Kraft	schwache Kraft	starke Kraft			
	1 Photon	3 Bosonen Z ⁰ W ⁺ W ⁻	8 Gluonen			
couples to mass	couples to charge	couples to weak isospin	couples to color			
~10 ⁻⁴⁰	1/137	10 -13	~1			
	due to the high mass of W, Z:					
	W: ~ 80 GeV , Z: ~ 91 GeV					

The Standard Model of Particle Physics

- The SM describes our visible Universe by a (reasonably small) set of particles:
 - The particles that make up matter: Spin 1/2 Fermions
 - ... and the force carriers: Spin 1 Vector bosons

Elen	nentary F	Particles		Elen	Elementary Forces		
	(1	Generatio 2	n 3		exchange boson	relative strength	
Quarks	u	С	t	Strong	g	1	
	d	S	b	elmagn.	γ	1/137	
Leptons	v _e	V _µ	ν _τ	Weak	W±, Z ⁰	10 -14	
	е	μ	τ	Gravitation	G	10 -40	

... plus the Higgs particle as a consequence of the mechanism to generate mass

Underlying theories:

QCD

QED / weak interaction

electroweak unification (GSW)

Key Elements of the Standard Model: Electroweak

- The electroweak part of the SM is based on the gauge group SU(2) x U(1)
- This gives rise to the gauge bosons W⁺, W⁻, Z for SU(2) and γ for U(1)
- Left-handed fermion fields transform as doublets under SU(2) right handed fermions as singlets (no coupling of right-handed fermions to W;
 V-A structure of the weak interaction (maximum parity violation))
- There are three fermion families
- A complex scalar Higgs field is added for mass generation through spontaneous symmetry breaking to give mass to the gauge bosons and fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson
- The electroweak SM describes in lowest order ("Born approximation") processes such as $f_1f_2 \rightarrow f_3f_4$ with only 3 free parameters: α , G_f , $sin^2\theta_W$

Key Elements of the Standard Model: Strong

- Described by **Quantum Chromodynamics (QCD),** gauge group SU(3)
- Gluons as exchange bosons, couple to "color", a "charge" carried by quarks
- Gluons themselves carry color charge: can self-interact
- The coupling constant of the strong interaction (α_s) decreases with increasing momentum transfer: In the limit of very short distances, the coupling vanishes:
 asymptotic freedom
- On the other hand: coupling tends to infinity for large distances: It is impossible to separate color charges, at large distance new particle / antiparticle pairs are created from the increasing field energy. Only colorneutral objects can exist as free
 particles: Confinement

 Gives rise to the rich structure of hadrons, the complexity of the proton and of final states in particle collisions

The Evolution of the Universe

The Evolution and Composition of the Universe

How do we know the composition?

- The movement of A galaxy clusters 9 shows the matter density
- Also: Galaxy rotation, gravitational lensing, ...

How do we know the composition?

• CMB - fluctuations show that the universe is "flat":

 $\Omega_{\Lambda} + \Omega_{M} = 1$

 Power spectrum contains information on baryonic and dark matter densities extracted from "acoustic peaks"

How do we know the composition?

 Supernova data show that the expansion is accelerating

http://physicsworld.com/cws/article/print/19419

Fundamental Open Questions

- Particle Physics Experiments and Astronomical / Astrophysical Observations reveal unexplained phenomena currently not answered by the Standard Model
 - "obvious" problems:
 - What is Dark Matter? What is Dark Energy?
 - What caused the Matter / Antimatter asymmetry in the Universe?
 - Requires: Baryon Number violation, C and CP violation, Reactions out of thermal equilibrium (Sakharov Conditions)
 - How are Neutrino Masses generated?
 - ...
 - "theoretically justified" problems:
 - Origin of electroweak symmetry breaking
 - Hierarchy problem
 - •

Particle Physics with Accelerators and Natural Sources: SS 2019, 01: Introduction Resolution *requires* new experimental evidence!

Strategies for Discovery in Particle Physics

• Two complementary approaches:

Direct searches at highest energies:

Production and detection of new particles

Precision measurements:

 $p \xrightarrow{q} \tilde{\chi}_{2}^{0} \xrightarrow{q} \mu^{+} \tilde{\chi}_{1}^{0}$

Indirect Discoveries: Brief History

Parti	cle	Indirect				Direct		
ν		β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956	
W		β decay	Fermi	1932	W→ev	UA1, UA2	1983	
С		<i>K</i> ⁰	GIM	1970	J/ψ	Richter, Ting	1974	
b		СРV <i>К⁰ →пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977	
Z		v-NC	Gargamelle	1973	Z→ e+e-	UA1	1983	
t		B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995	
н		e+e-	EW fit, LEP	2000	$H \rightarrow 4\mu/\gamma\gamma$	CMS, ATLAS	2012	
-	?	What'	s next ?	?			?	
$U \xrightarrow{u}_{W^{-}} e^{-} \xrightarrow{\mu}_{\bar{\nu}_{e}} s \xrightarrow{\mu}_{W^{-}} p \xrightarrow{v}_{Z^{-}} e^{+} \xrightarrow{H}_{Z^{-}} \xrightarrow{u}_{W^{-}} p \xrightarrow{v}_{Z^{-}} \xrightarrow{u}_{Z^{-}} \xrightarrow{u}_{Z^{-}} \xrightarrow{u}_{W^{-}} \xrightarrow{u}_{Z^{-}} \xrightarrow{u}_{$								
		- W	•		taken	from Niels Turing, IC	CHEP 20 [.]	

Indirect Discoveries: Brief History

Experimental Techniques in Particle Physics

Experimental Tools: Accelerators

• Acceleration of charged particles to (ultra)relativistic energies: GeV to TeV range

Experimental Tools: Particle Detectors

• The goal of a particle detector: Provide sensitivity to particles by generating a signal from interactions with detector material

Particle Detectors: Energy Loss in Matter

Ionisation energy loss: Most prominent interaction - and signal generation mechanism

Described by Bethe-Bloch equation

- Valid in intermediate energy range: $\sim 0.1 < \beta \gamma < \sim 1000$
 - at low energies: atomic effects at high energies: radiative energy loss in addition
- Z/A Dependence: high energy loss in H
- 1/β² for low momenta: Heavy particles loose more energy
- Minimum at p/m ~ 3-4: minimum ionizing particle MIP
- Logarithmic rise for high energy
- Additional density effect due to polarization of absorber

Interaction of Photons

energy threshold: 2 $m_e = \sim 1.022 \text{ MeV}$

 In contrast to dE/dx of charged particles: "all-or-nothing" reactions with a certain probability

Decrease of photon intensity with material thickness

$$I(x) = I_0 e^{-\mu x}$$

High-Energy Electrons and Photons

• Two related processes: Pair Production and Bremsstrahlung

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and e⁺e⁻ - pair creation, respectively)
 - Defined as the amount of matter that has to be traversed such that
 - an electron loses all but 1/e of its energy via Bremsstrahlung
 - 7/9 of the mean free path for pair creation for high-energy photons

empirical:
$$X_0 = \frac{716.4 A}{Z(1+Z) \ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2}$$

Detection Techniques: Ionization

saturation

Voltage, volts

1000

Detection Techniques: Szintillation

Detection Techniques: Cherenkov Light

"Supersonic Boom" with photons

Detection Techniques: Cherenkov Light

• Emission of photons by charged particles which are faster than the speed of light in the medium: constructive interference

Emission with a characteristic angle:

$$\cos\theta_c = \frac{ct/n}{vt} = \frac{1}{n\beta}$$

Detection Techniques: Light Detection

• The classic way to detect visible (or near-visible) photons:

- Conversion of the photon to a photoelectron on a photo-cathode
- Amplification of single-electron signal to a detectable signal with several dynodes
- Suited for a wide range of wavelengths ranging from UV to IR, good efficiency, up to ~ 25% (with special techniques up to ~ 40%), single photons can be detected
- Large active areas are possible: SuperKamiokande uses PMTs with an active area 460 mm in diameter

- Silicon detectors can also be used to detect visible photons, but:
 - Photo effect only creates a single electron-hole pair (very different from the situation with charged particles): Amplification is crucial!
 - The usual charge amplification of up to ~100 reachable in silicon is insufficient to detect single photons with high efficiency n

- Highest amplification (~ 10⁶) by running APDs in Geiger mode: a single photon triggers a discharge, the diode operates in digital mode: Yes/No, no dependence of the current on the number of photons
- The trick: Put many small APDs on a chip, read out the summed-up signal
 - Easy handling: Only one channel (as a PMT, hence the name)
 - Extreme amplification: Detection of single photons not a problem!

• The Silicon Photomultiplier

Low Background / Precision Experiments: A few Examples

Cryogenic Detectors for Dark Matter: CRESST

- Cryogenic Rare Event Search with Superconducting Thermometers
- Search for weakly interacting massive particles (WIMPs)
- Detection via nuclear recoil in crystals, measured with superconducting thermometers

Cherenkov Detectors for Neutrinos

- Detection in deep underground detectors via Cherenkov light of muons or electrons produced in charged current reactions
 Example: Muon in IceCube (Ice as Cherenkov medium)
- Atmospheric neutrinos:
 - Are produced in air showers via pion and muon decay
 - Observation of neutrino oscillations
- Cosmic neutrinos
 - Supernovae
 - Other cosmic sources?

Cherenkov Detectors for Neutrinos

Cherenkov Detectors for Neutrinos

Particle Physics with Accelerators and Natural Sources: SS 2019, 01: Introduction

Tac (raw)

2500

Large Cryogenic Time Projection Chambers

Large Cryogenic Time Projection Chambers

• For DUNE (Deep Underground Experiment), under construction at Fermilab, USA: 4 LAr TPCs, each with 10 kT fiducial volume (17 kT total volume)

Each detector: 60 m long, 14 m wide, 12 m high

Events from a smaller (170 t) LAr TPC: Demonstrates spatial resolution, pattern recognition capabilities

Large Cryogenic Time Projection Chambers

Summary

- Particle physics with accelerators, astroparticle physics and cosmology have provided a consistent and detailed picture of elementary particles, their interactions, and the structure and evolution of the Universe
 - Despite this success, fundamental questions remain unanswered, requiring physics beyond the Standard Model
- Detector technology is crucial for experiments exploring these questions

We'll explore these questions, and discuss relevant experiments in the course of the lecture.

Next Lecture: 06.05., "Dark Matter axions and ALPs: Where do they come from?", B. Majorovits

Lecture Overview

29.04.	Introduction & Recap: Particle Physics & Experiments				
06.05.	Dark Matter axions and ALPs: Where do they come from?	B. Majorovits			
13.05.	Axions and ALPs detection				
20.05.	Dark Matter WIMPs - origin and searches				
27.05.	Precision Tests of the Standard Model	F. Simon			
03.06.	Neutrinos: Freeze out, cosmological implications, structure formation				
	Pentecost				
17.06.	Natural Neutrino Sources: What can we learn from them?	B. Majorovits			
24.06.	Accelerator Neutrinos	F. Simon			
01.07.	Precision Experiments with low-energy accelerators	F. Simon			
08.07.	Neutrinoless Double Beta Decay	B. Majorovits			
15.07.	Gravitational Waves	F. Simon			
22.07.	Physics with Flavor: Top and Bottom	F. Simon			

