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Goal / Content of the Lecture

• The connections of particle and astro-particle physics


• Precision tests of the Standard Model of particle physics


• Dark Matter - WIMPs and Axions


• Neutrinos in the cosmos, from accelerators and natural sources


• Precision experiments at accelerators and the physics of heavy quarks


• Gravitational waves


• We are open to other topics as well - just let me know!
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Organisation
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• Time and place: 

• Mondays, 14:00 - 16:00


• Physik II, Seminarraum PH 127


• Prerequisites:

• Introductory lecture to Particle, Nuclear & Astrophysics


• Exercise Classes: None


• Exams: On request - contact me via email


• Slides (FS) / Lecture Notes (BM): Available on-line 
in MPP indico system  
https://indico.mpp.mpg.de/category/135/

If not done yet: please sign up 
in TUM Online!
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Lecture Overview
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29.04. Introduction & Recap: Particle Physics & Experiments F. Simon

06.06. Dark Matter axions and ALPs: Where do they come from? B. Majorovits

13.05. Axions and ALPs detection B. Majorovits

20.05. Dark Matter WIMPs - origin and searches B. Majorovits

27.05. Precision Tests of the Standard Model F. Simon

03.06. Neutrinos: Freeze out, cosmological implications, structure formation B. Majorovits

Pentecost

17.06. Natural Neutrino Sources: What can we learn from them? B. Majorovits

24.06. Accelerator Neutrinos F. Simon

01.07. Precision Experiments with low-energy accelerators F. Simon

08.07. Neutrinoless Double Beta Decay B. Majorovits

15.07. Gravitational Waves F. Simon

22.07. Physics with Flavor: Top and Bottom F. Simon
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Topics Today

• Introduction & Reminder: 

• The Standard Models of Particle Physics and Cosmology


• Open Questions


• Experimental Strategies


• Experimental Tools

• Interaction of particles with matter


• Detection techniques


• Selected detector examples
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Introduction:  
Our Understanding of Particle Physics and the Universe
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From the very big to the very small 
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Size Mass

Universe 1026 m 1052 kg

Galaxy 1021 m 1041 kg

Solar system 1013 m 1030 kg

Earth 107 m 1024 kg

Man 100 m 102 kg

Atom 10-10 m 10-26 kg

Nucleus 10-14 m 10-26 kg

Nucleon 10-15 m 10-27 kg

Quarks, Leptons <10-18 m 10-30 kg

“Astroteilchenphysik in Deutschland”, http://www.astroteilchenphysik.de/, und darin angegebene Referenzen

http://www.astroteilchenphysik.de
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Fundamental Forces

• Four known Forces

• Gravitation governs our every-day life, evolution of the Universe


‣ It is irrelevant on the scales of particle physics
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couples to mass couples to charge couples to weak

isospin

couples to 
color

Relative strength at low energies

~10-40 1/137 10-13 ~1
due to the high mass of W, Z:

W: ~ 80 GeV , Z: ~ 91 GeV
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The Standard Model of Particle Physics
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• … and the force carriers: Spin 1 Vector bosons

Elementary Forces

exchange boson

Strong

el.-magn.

Weak

G

g

γ

W±, Z0

Gravitation

1

1/137

10-14

10-40

relative

strength

• The SM describes our visible Universe by a (reasonably small) set of particles:

Generation
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c
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τ

μ τe

1 2 3

Elementary Particles

• The particles that make up matter: Spin 1/2 Fermions

Quarks

Leptons

Underlying theories: QCD QED / weak interaction

➫ electroweak unification (GSW)

… plus the Higgs particle as a consequence of the mechanism to generate mass
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Key Elements of the Standard Model: Electroweak

• The electroweak part of the SM is based on the gauge group 
SU(2) x U(1)

�10
Particle Physics with Accelerators and Natural Sources: 
SS 2019, 01: Introduction

• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)

• Left-handed fermion fields transform as doublets under SU(2) - right handed  
fermions as singlets (no coupling of right-handed fermions to W;  
V-A structure of the weak interaction (maximum parity violation))

• There are three fermion families

• A complex scalar Higgs field is added for mass generation through 
spontaneous symmetry breaking to give mass to the gauge bosons and 
fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson

• The electroweak SM describes in lowest order (“Born approximation”) 
processes such as f1f2 -> f3f4 with only 3 free parameters: α, Gf, sin2θW
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Key Elements of the Standard Model: Strong

• Described by Quantum Chromodynamics (QCD), gauge group SU(3) 


• Gluons as exchange bosons, couple to “color”, a “charge” carried by quarks


• Gluons themselves carry color charge: can self-interact
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• On the other hand: coupling tends to 
infinity for large distances: It is 
impossible to separate color charges, 
at large distance new particle / anti-
particle pairs are created from the 
increasing field energy. Only color-
neutral objects can exist as free 
particles: Confinement

• Gives rise to the rich structure of 
hadrons, the complexity of the proton 
and of final states in particle collisions

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)(–)

• The coupling constant of the strong interaction (αs) decreases with increasing 
momentum transfer: In the limit of very short distances, the coupling vanishes: 
asymptotic freedom
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The Evolution of the Universe
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matter / 

antimatter 

- asymmetrie

nucleons are 
formed

nucleo-synthesis

atoms: Universe  
gets transparent

first supernova
stars and galaxies

direct observation

particle physics  
at accelerators
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The Evolution and Composition of the Universe

• Ordinary matter (explained by the Standard 
Model!) only makes up a small fraction of 
the energy content of the Universe
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Image: Design Alex Mittelmann, Coldcreation, CC BY-SA 3.0Ordinary Matter
Dark Matter
Dark Energy
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How do we know the composition?

• The movement of 
galaxy clusters 
shows the matter 
density
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Also: Galaxy rotation, 
gravitational lensing, …
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How do we know the composition?
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• CMB - fluctuations show that the 
universe is “flat”:  
ΩΛ + ΩM = 1

• Power spectrum contains 
information on baryonic and 
dark matter densities - 
extracted from “acoustic 
peaks”
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How do we know the composition?
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• Supernova data show 
that the expansion is 
accelerating

http://physicsworld.com/cws/article/print/19419

30% Matter30% Matter, 
70% Λ

100% Matter

• All together: 

The cosmic 
pie chart

http://physicsworld.com/cws/article/print/19419
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Fundamental Open Questions

• Particle Physics Experiments and Astronomical / Astrophysical Observations 
reveal unexplained phenomena currently not answered by the Standard Model

�17
Particle Physics with Accelerators and Natural Sources: 
SS 2019, 01: Introduction

• What caused the Matter / Antimatter asymmetry in the Universe?

• Requires: Baryon Number violation, C and CP violation, Reactions out of 
thermal equilibrium (Sakharov Conditions)

• “theoretically justified” problems: 

• Origin of electroweak symmetry breaking


• Hierarchy problem


• …

• How are Neutrino Masses generated?

• …

• What is Dark Matter? What is Dark Energy?
• “obvious” problems:

Resolution requires new 
experimental evidence!
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Strategies for Discovery in Particle Physics

• Two complementary approaches:
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Direct searches at highest energies:


Production and detection of new particles

The Emphasis in this semester

e+

e–

e+

e–

Z0 Z0

–

t

e+

e–

e+

e–

Z0

H

Precision measurements: 
 
Indirect evidence for new  
particles in virtual  
quantum loops
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Indirect Discoveries: Brief History
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Heavy Flavour = Precision search for NP 

  Historical record of indirect discoveries: 

Particle Indirect Direct 
ν β decay Fermi 1932 Reactor ν-CC Cowan, Reines 1956 

W β decay Fermi 1932 Wàeν UA1, UA2 1983 

c K0àµµ GIM 1970 J/ψ Richter, Ting 1974 

b CPV K0àππ CKM, 3rd gen 1964/72 Υ Ledermann 1977 

Z ν-NC Gargamelle 1973 Zà e+e- UA1 1983 

t B mixing ARGUS 1987 tà Wb D0, CDF 1995 

H e+e- EW fit, LEP 2000 Hà 4µ/γγ CMS, ATLAS 2012 

? What’s next ? ? ? 
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Frank Simon (fsimon@mpp.mpg.de)

Indirect Discoveries: Brief History
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Heavy Flavour = Precision search for NP 

d

K0
W

νµ

s

W
c

µ+

µ−

B0 B̄0
W

W
tt

b

d

d

b

Z
p

ν

ν

Z

H

e−

e+

W−

d

ν̄e

e−

u

5 

C
om

pilation by F. D
ettori 

1920 1940 1960 1980 2000 2020

Neutrino

W boson

Beauty quark

Charm quark

Z boson

Top quark

Higgs boson

The Standard Model of particle physics
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Experimental Techniques in Particle Physics
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Experimental Tools: Accelerators

• Acceleration of charged particles to (ultra)relativistic energies: GeV to TeV range
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credit:EPSIM 3D/JF Santarelli, Synchrotron Soleil

accelerating cavity:

Electromagnetic 
RF fields

bending magnet: dipoleMostly: Synchrotrons

focusing magnet:

quadrupoles (and higher)
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Experimental Tools: Particle Detectors
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• The goal of a particle detector: Provide sensitivity to particles by generating a 
signal from interactions with detector material

Charge from ionisation

Light produced by scintillation 
following ionisation

Cherenkov light

Collect:

...



Frank Simon (fsimon@mpp.mpg.de)

Particle Detectors: Energy Loss in Matter

• Ionisation energy loss: Most prominent interaction - and signal generation mechanism
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• Valid in intermediate energy 
range: ~0.1 < βγ < ~ 1000

• at low energies: atomic effects 

at high energies: radiative 
energy loss in addition


• Z/A Dependence: high energy 
loss in H


• 1/β2 for low momenta: Heavy 
particles loose more energy


• Minimum at p/m ~ 3-4: 
minimum ionizing particle MIP


• Logarithmic rise for high energy


• Additional density effect due to 
polarization of absorber

Described by Bethe-Bloch equation
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Interaction of Photons
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• In contrast to dE/dx of charged particles: 
“all-or-nothing” reactions with a certain probability

ν

ν’
e-

ν

ν’

e-

e-

e+

nucleus

Photo effect Compton scattering Pair creation

energy threshold: 

2 me = ~1.022 MeV

I(x) = I0e
�µx

➫ Decrease of photon intensity with material thickness
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High-Energy Electrons and Photons

• Two related processes: Pair Production and Bremsstrahlung
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• Defined as the amount of matter that has to be traversed such that

• an electron loses all but 1/e of its energy via Bremsstrahlung

• 7/9 of the mean free path for pair creation for high-energy photons

X0 = 716.4 A
Z(1+Z) ln(287/

�
Z)

g
cm2 � A

Z2empirical:

• The relevant length scale: one radiation length

• Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and 

e+e- - pair creation, respectively)

particle showers
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Detection Techniques: Ionization
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• Passage of particles creates 
electron-ion pairs in the gas volume


• Electrons are accelerated by strong 
electric field - avalanche 
multiplication takes place


• Depending on the voltage the signal 
is either proportional to the originally 
deposited charge, or goes into 
saturation
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Detection Techniques: Szintillation
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• Scintillators emit light when 
traversed by ionizing particles

• Excitation of atomic and 

molecular states, metastable 
states (organic scintillators) or 
Defects in Crystals (inorganic 
scintillators)

organic

inorganic:
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Detection Techniques: Cherenkov Light
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“Supersonic Boom” with photons
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Detection Techniques: Cherenkov Light
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• Emission of photons by charged particles which are faster than the speed of 
light in the medium: constructive interference

cos⇥c =
c t / n

v t
=

1
n�

Emission with a characteristic angle:
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Detection Techniques: Light Detection
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• The classic way to detect visible (or near-visible) photons:

• Conversion of the 
photon to a photo-
electron on a 
photo-cathode


• Amplification of 
single-electron 
signal to a 
detectable signal 
with several 
dynodes

• Suited for a wide range of wavelengths ranging from UV to IR, good efficiency, up to  
~ 25% (with special techniques up to ~ 40%), single photons can be detected


• Large active areas are possible: SuperKamiokande uses PMTs with an active area  
460 mm in diameter
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Detection Techniques: Light Detection with Silicon
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• Silicon detectors can also be used to detect visible photons, but:

• Photo effect only creates a single electron-hole pair (very different from the 

situation with charged particles): Amplification is crucial!

‣ The usual charge amplification of up to ~100 reachable in silicon is insufficient to 

detect single photons with high efficiency n

Gain ~ 100

No Gain

Avalanche Photo Diode APD
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Detection Techniques: Light Detection with Silicon
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• Highest amplification (~ 106) by running APDs in Geiger mode: a single 
photon triggers a discharge, the diode operates in digital mode: Yes/No, no 
dependence of the current on the number of photons

• The trick: Put many small APDs on a chip, read out the summed-up signal

• Easy handling: Only one channel (as a PMT, hence the name)


• Extreme amplification: Detection of single photons not a problem!

N x 
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Detection Techniques: Light Detection with Silicon
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• The Silicon Photomultiplier
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Detection Techniques: Light Detection with Silicon
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Single photons can be resolved

higher light 
intensity
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Low Background / Precision Experiments:  
A few Examples
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Cryogenic Detectors for Dark Matter: CRESST
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• Cryogenic Rare Event Search with Superconducting Thermometers

• Search for weakly interacting massive particles (WIMPs)


• Detection via nuclear recoil in crystals, measured with superconducting thermometers
• Recoil energy is transformed to phonons, 

increases temperature of thermometer, 
change of resistance is detected with 
SQUIDs
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Cherenkov Detectors for Neutrinos

• Detection in deep underground 
detectors via Cherenkov light of muons 
or electrons produced in charged 
current reactions 
Example: Muon in IceCube (Ice as 
Cherenkov medium)


• Atmospheric neutrinos:

• Are produced in air showers via pion 

and muon decay


• Observation of neutrino oscillations


• Cosmic neutrinos

• Supernovae


• Other cosmic sources?
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Cherenkov Detectors for Neutrinos

• 1 km3 

instrumented 
volume in the ice 
sheet at the  
south pole
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Cherenkov Detectors for Neutrinos
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The SNO detector: Heavy 
water; targeting solar neutrinos
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Large Cryogenic Time Projection Chambers
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• TPCs: A technique to get 3D 
Images with 2D readout + time, 
with large volume detectors

• Commonly used in large gas-

filled volumes


• For neutrino experiments: liquid 
nobel gasses: liquid argon

14.4 m 

12
 m

 A A A C C 

Anode planes Cathode planes 

Steel Cryostat 

3.6 m E

⌫

e� �180 kV

C A 
time /ms

w
ire

#
time /ms

w
ire

#
time /ms

w
ire

#



Frank Simon (fsimon@mpp.mpg.de)

Large Cryogenic Time Projection Chambers
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• For DUNE (Deep Underground Experiment), under construction at Fermilab, 
USA: 4 LAr TPCs, each with 10 kT fiducial volume (17 kT total volume)

Each detector: 
60 m long, 14 m wide,  
12 m high

Events from a smaller 
(170 t) LAr TPC: 
Demonstrates spatial 
resolution, pattern 
recognition capabilities
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Large Cryogenic Time Projection Chambers
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• Interesting challenge: contain 10 000 m3 of liquid Argon (87 K, -186 C)

• Technologies from LNG ships
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Summary

• Particle physics with accelerators, astroparticle physics and cosmology have 
provided a consistent and detailed picture of elementary particles, their 
interactions, and the structure and evolution of the Universe

• Despite this success, fundamental questions remain unanswered, requiring 

physics beyond the Standard Model


• Detector technology is crucial for experiments exploring these questions
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Next Lecture: 06.05., “Dark Matter axions and ALPs: 
Where do they come from?”, B. Majorovits

We’ll explore these questions, and discuss relevant experiments 
in the course of the lecture.
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Lecture Overview
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