Particle Physics with Accelerators and Natural Sources

05. Precision Tests of the Standard Model

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

27.05.2019

Dr. Frank Simon Dr. Bela Majorovits

Overview

- The Standard Model: Intro & History
- e^{+e-} collisions for precision tests
- The Z⁰ resonance
- Direct and indirect measurements

Reminder: The Standard Model

- The SM describes our visible Universe by a (reasonably small) set of particles:
	- The particles that make up matter: Spin 1/2 Fermions
	- ... and the force carriers: Spin 1 Vector bosons

… plus the Higgs particle as a consequence of the mechanism to generate mass

Underlying theories: QCD QED / weak interaction

 \Rightarrow electroweak unification (GSW)

The Structure of the Standard Model

- The electroweak part of the SM is based on the gauge group SU(2) x U(1)
- This gives rise to the gauge bosons W⁺, W⁻, Z for SU(2) and γ for U(1)
- Left-handed fermion fields transform as doublets under SU(2) right handed fermions as singlets (no coupling of right-handed fermions to W; V-A structure of the weak interaction)
- There are three fermion families
- A complex scalar Higgs field is added for mass generation through spontaneous symmetry breaking to give mass to the gauge bosons and fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson
- The electroweak SM describes in lowest order ("Born approximation) processes such as $f_1f_2 \rightarrow f_3f_4$ with only 3 free parameters: a, G_f , sin² θ_W

The History of the Standard Model

Theory

The Standard Model (and its components) has withstood all tests & attempts to break it / find inconsistencies!

Testing the Standard Model

- The "vanilla" Standard Model (ignoring neutrino masses & mixings) has 18 free parameters that need to be measured
	- 9 fermion masses (= couplings to the Higgs Field)
	- 3 CKM mixing angles + 1 CKM phase
	- 3 coupling constants (electromagnetic, weak, strong)
	- \cdot 1 Z⁰ mass
	- 1 Higgs mass
- Other measurable parameters, such as the Weinberg angle and the W mass can be calculated taking the 18 parameters as input: A direct possibility to test SM prediction
- In addition: Particles occur "in loops" and modify measurable properties and cross sections: Calculable - can be tested, and used to indirectly search for new particles

The Tool for Precision Tests: e+e- Collisions

- e+e- annihilation:
	- point-like particles
	- well-known quantum numbers and energies of initial and final states
	- no hadronic (strong) interactions in and with initial state:
		- no underlying or "remnant" event
		- couplings << 1: calculable in perturbation theory

- Technical requirements:
	- precise knowledge of e⁺e⁻ energies (accelerator)
	- precise knowledge of luminosity (special detectors)
	- precise measurement & classification of all final states (detectors)

Electron-Positron Colliders

Particle Physics with Accelerators and Natural Sources: Particle Physics with Accelerators and Natural Sources: 2014 Frank Simon (fsimon@mpp.mpg.de) **8** SS 2019, 05: Precision Tests of the Standard Model

High-energy e+e- Colliders: SLC, LEP

- SLC (1989 1999): Center-of-mass energy \sim 91 GeV (on the Z^0 resonance)
- LEP: 1989 2000
	- LEP I: Center-of-mass energy \sim 91 GeV (on the Z^0 resonance)
	- LEP II: Center-of-mass energy up to 209 GeV
- For precision measurements:
	- Need precise measurement of collider energy
		- At LEP measured via resonant depolarisation of self-polarisation of beam which builds up over time (up to a beam energy of 55 GeV), extrapolation via flux-loop measurements beyond :
			- Energy uncertainty at 90 GeV center of mass: 1.4 MeV
			- Energy uncertainty at 200 GeV center of mass: 25 30 MeV
	- For SM precision measurements: polarisation of beams valuable: A strength of linear accelerators: 80% e- polarisation at SLC - not possible at LEP

LEP in one Slide

27 km circumference maximum energy 209 GeV

Particle Physics with Accelerators and Natural Sources: 10 Particle Physics with Accelerators and Natural Sources: 10 Particle Physics with Accelerators and Natural Sources: 10 Particle Physics with Accelerator SS 2019, 05: Precision Tests of the Standard Model

SLC in one Slide

Particle Physics with Accelerators and Natural Sources: 11 *Particle Physics with Accelerators and Natural Sources:**11* *****Particle Physics with Accelerators and Natural Sources: Premission Computer Standard Made* SS 2019, 05: Precision Tests of the Standard Model

Experiments at LEP

• The beginning of the (very) large collaborations in particle physics: several 100 members (~ 300 - 700, changing with time)

International collaboration on a new scale, required tools for free exchange of information and data

One consequence: Invention of WWW at CERN in 1989

Particle Physics with Accelerators and Natural Sources: 12 Particle Physics with Accelerators and Natural Sources: 12 Prank Simon (fsimon@mpp.mpg.de) 12 SS 2019, 05: Precision Tests of the Standard Model

e+e- Experiments: One Example - OPAL @ LEP

Particle Physics with Accelerators and Natural Sources: 13 Particle Physics with Accelerators and Natural Sources: 13 Prank Simon (fsimon@mpp.mpg.de) 13 SS 2019, 05: Precision Tests of the Standard Model

 74.49

e+e- Experiments: One Example - OPAL @ LEP

Particle Physics with Accelerators and Natural Sources: 14 Particle Physics with Accelerators and Natural Sources: 14 Prank Simon (fsimon@mpp.mpg.de) **14** SS 2019, 05: Precision Tests of the Standard Model 744.47

Final States in e+e- Annihilation: 91+ GeV

Particle Physics with Accelerators and Natural Sources: 15 Particle Physics with Accelerators and Natural Sources: 15 Prank Simon (fsimon@mpp.mpg.de) 15 SS 2019, 05: Precision Tests of the Standard Model

Final States in e+e- Annihilation: LEP II

Particle Physics with Accelerators and Natural Sources: 16 Particle Physics with Accelerators and Natural Sources: 16 Prank Simon (fsimon@mpp.mpg.de) 16 SS 2019, 05: Precision Tests of the Standard Model

Physics at LEP and SLC - a few Examples -

The Hadronic Cross Section in e+e- Collisions

Particle Physics with Accelerators and Natural Sources: 18 Particle Physics with Accelerators and Natural Sources: 18 Prank Simon (fsimon@mpp.mpg.de) 18 SS 2019, 05: Precision Tests of the Standard Model

Cross sections in Electroweak Interactions

• The minimal SM in lowest order ("Born approximation" describes processes like:

 $e^+e^- \rightarrow \Gamma f$

by just three free parameters:

fine structure constant (electromagnetic interaction) \propto cm G_F Fermi constant (weak interaction), obtained from μ lifetime $sIm20v$ weak mixing angle, obtained from neutrino - Nucleon scattering

or:
\n
$$
\alpha_{em}u_{fr}M_{f}
$$

\n $\alpha_{em}u_{fr}M_{f}$

Particle Physics with Accelerators and Natural Sources: 19 Particle Physics with Accelerators and Natural Sources: 19 Particle Physics with Accelerators and Natural Sources: 19 Particle Physics with Accelerato SS 2019, 05: Precision Tests of the Standard Model

The Z⁰ Resonance

• For resonant production through a Z, the width of the Z influences the cross section (Breit-Wiegner resonance):

$$
\sigma(e^+e^- \Rightarrow \vec{z} \Rightarrow f\vec{f}) = \frac{42\pi}{m_2^2} \underbrace{\frac{S}{(S-m_2^2)^2 + m_2^2} \vec{f}_2^2}}_{\text{C.0.m. energy } \vec{f} \neq \vec{f}
$$
\n
$$
\text{Maximum at: } \sigma_{\hat{\mu}\bar{\rho}}^{\circ} = \frac{22\pi}{m_2^2} \underbrace{\frac{f_e}{(e_e - f_f)^2}}_{\text{C.0.m.}} \frac{f_e}{f_e^2}
$$

The partial widths (decay into a given fermion pair) can be calculated in the SM:

$$
\mu_{\phi} = \frac{a_{\phi} M_{2}^{3}}{6\pi \sqrt{2}} \cdot \left[g_{\phi}^{2} + g_{\gamma}^{2} \right] \cdot N_{c_{1}f} \qquad \text{color factor:}
$$
\n
$$
= \frac{a_{\phi} M_{2}^{3}}{6\pi \sqrt{2}} \cdot \left[g_{\phi}^{2} + g_{\gamma}^{2} \right] \cdot N_{c_{1}f} \qquad \text{3 for quarks, 1 for leptons}
$$
\n
$$
= \frac{a_{\phi} M_{2}^{3}}{6\pi \sqrt{2}} \cdot \frac{a_{\phi} M_{2}^{2}}{6\pi \sqrt{2}} \cdot \frac{a_{\phi} M_{2}^{2}}{6\pi \sqrt{2}} \cdot \frac{a_{\phi} M_{2}^{3}}{6\pi \sqrt{2}} \cdot \frac{a_{\phi} M_{2}^{2}}{6\pi \sqrt{2}} \cdot \frac{a_{\phi} M_{2}^{2}}{
$$

It's not quite that simple: Initial State Radiation

• The e⁺ and e⁻ can radiate photons before colliding, changing the energy:

Precision Measurements at the Z

This precision can not be reached at hadron colliders - LEP input used for calibration at LHC

Determining the number of light neutrino flavors from the Z width:

Given by: Γ _Z = Γ _{ee} + Γ _{μμ} + Γ _{ττ} + Γ _{had} **+ Γνeνe + Γνμνμ + Γντντ** $= 3 \Gamma_{\parallel} + \Gamma_{\text{had}} + \mathbf{N}_{\text{v}} \Gamma_{\text{vv}}$

The partial width into visible final states can be directly measured

Taking the SM prediction for Γ_{vv} from the measured cross section and total width the number of (light) neutrinos can be determined

$$
N_v = 2.984 \pm 0.008
$$

Challenges imposed by Precision Goals

- As the moon orbits the Earth it distorts the rock in the Geneva area very slightly !
- The nominal radius of the accelerator of 4.3 km varies by ± 0.15 mm
- Changes beam energy by ~10 MeV : need to correct for tidal effects !

- Leakage currents from the TGV railway line return to Earth following the path of least resistance.
- Travelling via the Versoix river and using the LEP ring as a conductor.
- Each time a TGV train passed by, a small current circulated LEP slightly changing the magnetic field in the accelerator
- LEP beam energy changes by ~10 MeV

Moon

Radiative Corrections

Particle Physics with Accelerators and Natural Sources: 24 Particle Physics with Accelerators and Natural Sources: 24 Prank Simon (fsimon@mpp.mpg.de) 24 SS 2019, 05: Precision Tests of the Standard Model

Modifications of the Cross Sections by Corrections

insertion of running couplings in "Born"-approximation :

partial Z decay widths
$$
\Gamma_{\rm f} = \frac{G_{\rm f} M_{\rm z}^3}{6\pi\sqrt{2}} \Big[g_{\rm af}^2 + g_{\rm vf}^2 \Big] N_{\rm cf}
$$
 (and also
cross sections) acquire dependence on:
$$
\cdot M_{\rm H}
$$

 \Rightarrow indirect determination (fit) of M_t, M_H, and α_s from combination of all available electroweak observables

> (differential cross sections, partial decay widths, forward-backward asymmetries, τ -polarisation, left-right asymmetries (SLC))

Beyond Cross Section Measurements

• Differential cross sections

$$
\frac{d\sigma_f}{d\cos\theta} \propto H.(1+cos^2\theta) \neq B \cdot cos\theta
$$

depends on γ and Z0 exchange & interference, spin orientations (helicities) of initial and final state, on resonance, ...

Can be studied in a compact way as forward - backward asymmetries:

$$
\begin{array}{lll}\n\sigma_{F} &= \int_{0}^{1} \frac{d\sigma}{d\cos\theta} d\cos\theta & \sigma_{g} = \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} d\cos\theta & \overline{H}_{Fg} = \frac{\sigma_{F} - \sigma_{g}}{\sigma_{F} + \sigma_{g}} \\
\delta < \theta < \frac{\pi}{2} & \frac{\pi}{2} < \theta < \pi\n\end{array}
$$

Sensitive to vector and axial-vector couplings: non-zero AFB because the coupling of the Z to lefthanded and righthanded particles is different (for pure QED interactions A_{FB} would be zero)

Summary of Precision Measurements at LEP & SLC

Good overall consistency of a wide range of measurements with SM precision calculations observed

includes data from Tevatron: M_t , M_W

March 2012

Indirect vs direct Measurements

Indirect measurements use SM "as-is", fitting unknown particle masses using radiative / loop corrections sensitive to these particles

Consistency of direct & indirect Mass Measurements

Particle Physics with Accelerators and Natural Sources: 29 *Particle Physics with Accelerators and Natural Sources:* **29** *Particle Physics with Accelerators and Natural Sources:* **29** *Particle Physics with Accele* SS 2019, 05: Precision Tests of the Standard Model

Measuring Axial and Vector Couplings

Coupling of Vector Bosons

- Coupling of vector bosons: A key element of the group structure of the SM
- Observed in energy dependence of W pair production cross section

Searching for the Higgs @ LEP

status July 2000: no hint for the Higgs; $M_H > 113.3$ GeV/c² (95% CL) *[final status July 2001: MH > 114.1 GeV/c2]*

- 5. Sept. 2000: ALEPH sees excess in 4-Jet channel, compatible with $M_H \sim 115 \text{ GeV}/c^2$. LEP-combination: 2.2 σ excess over background
- 14. Sept. 2000: LEP-shutdown extended by 1 month, until 2. November 2000
- 3. Nov. 2000: further candidate events increase significance to 2.9σ . LEP-experiments ask for LEP run in 2001 *[status July 2001: after re-analyses (calibration) only 2.1* σ !*]*

8. Nov. 2000: LEP irrevocably shut down.

An Event that got People excited…

Particle Physics with Accelerators and Natural Sources: 144. In the Standard Media Cources: Prank Simon (fsimon@mpp.mpg.de) 34. 34. 34. 34. 34. 2010 05: Procision Tosts of the Standard Medel SS 2019, 05: Precision Tests of the Standard Model

Indirect Higgs Constraints before LHC

• Constraints from global fits, using radiative corrections that are sensitive to H

	$-1-$	$-2-$	$-3-$	$-4-$	- 5 -	$-6-$	
	LEP including LEP-II m_W , Γ_W	all Z-pole data	all Z-pole data plus $m_{\rm t}$	all Z-pole data plus m_W , Γ_W	all data except NuTeV	all data	
[GeV] $m_{\rm t}$	184^{+13}_{-11}	171^{+11}_{-9}	$173.6^{+4.7}_{-4.6}$	180^{+11}_{-9}	$175.4_{-4.2}^{+4.3}$	$174.3^{+4.5}_{-4.3}$	∗
[GeV] $m_{\rm H}$	228^{+367}_{-136}	81^{+107}_{-40}	99^{+64}_{-40}	117^{+161}_{-63}	78^{+48}_{-31}	81^{+52}_{-33}	
$\log(m_{\rm H}/{\rm GeV})$	$2.36_{-0.39}^{+0.42}$	$1.91_{-0.30}^{+0.37}$	$1.99^{+0.22}_{-0.23}$	$2.07^{+0.38}_{-0.33}$	$1.89^{+0.21}_{-0.22}$	$1.91^{+0.22}_{-0.23}$	
$\alpha_{\rm S}(m_{\rm Z}^2)$	0.1199 ± 0.0030	0.1186 ± 0.0027	0.1187 ± 0.0027	0.1185 ± 0.0027	0.1181 ± 0.0027	0.1183 ± 0.0027	
$\chi^2/\text{d.o.f.}$ (P)	13.3/9(15%)	$14.8/10(14\%)$	14.9/11(19%)	$17.9/12(12\%)$	20.5/14(11%)	$29.7/15(1.3\%)$	
$\sin^2\theta_{\text{eff}}^{\text{lept}}$	0.23160	0.23145	0.23145	0.23135	0.23131	0.23136	
	± 0.00018	± 0.00016	± 0.00016	± 0.00015	± 0.00015	± 0.00015	
$\sin^2\theta_W$	0.22284	0.22313	0.22299	0.22240	0.22255	0.22272	
	± 0.00053	± 0.00063	± 0.00045	± 0.00045	± 0.00036	± 0.00036	
[GeV] $m_{\rm W}$	80.388 ± 0.027	80.373 ± 0.032	80.380 ± 0.023	80.410 ± 0.023	80.403 ± 0.019	80.394 ± 0.019	

Table 16.2: Results of the fits to: (1) LEP data alone, (2) all Z-pole data (LEP-1 and SLD), (3) all Z-pole data plus direct m_t determinations, (4) all Z-pole data plus direct $m_{\rm W}$ and direct $\Gamma_{\rm W}$ determinations, (5) all data (including APV) except NuTeV, and (6) all data. As the sensitivity to $m_{\rm H}$ is logarithmic, both $m_{\rm H}$ as well as log($m_{\rm H}/{\rm GeV}$) are quoted. The bottom part of the table lists derived results for sin² $\theta_{\rm eff}^{\rm lept}$, sin² $\theta_{\rm W}$ and $m_{\rm W}$. See text for a discussion of theoretical errors not included in the errors above.

*** MH < 185 GeV (95% c.l.)**

Indirect & Direct Higgs Constraints pre-2012

from direct search: 114.1(LEP) 115.5 (LHC) < MH < 131 GeV/c2 (LHC)

indirect: radiative corrections: $M_H < 186 (157) GeV/c^2$ (95% CL)

Direct & Indirect: Comparison

 $(m_t, m_w$ measured) (fit, from rad. corr.)

- Direct and indirect mass measurements in good agreement
- After LEP2 it was clear that the (SM) Higgs had to be light!

A Word on the Future

- Currently discussing the Update of the European Strategy for Particle Physics
	- Main focus: Plans for post-LHC colliders

The emerging consensus: Highest priority for an e+e- collider to explore the Higgs particle with highest precision

- Access to various Higgs properties via several production mechanisms
- Different energy to access different processes from **250 GeV** to **1 TeV** and beyond

Summary

- The (electroweak) Standard Model combines QED and the weak interaction theory to describe electromagnetic and weak interactions - based on the Gauge Group SU(2) x U(1)
- It has been extremely successful in describing all observations to date
- Measurements at e+e- colliders (LEP, SLC) have been crucial to prove the validity of the Standard Model
- The detailed study of the Z^0 in particular has provided key information
	- 3 families
	- Vector and axial-vector couplings
	- \bullet ...
- All together: Allowed to make prediction for not yet observed particles: Top Quark, Higgs
	- All particles in the SM now observed, no obvious "crack" found to date

Next Lecture: 03.06., "Neutrinos: Freeze out, cosmological implications, structure formation", B. Majorovits

Lecture Overview

