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Overview

• The Standard Model: Intro & History


• e+e- collisions for precision tests


• The Z0 resonance


• Direct and indirect measurements
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Reminder: The Standard Model
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• … and the force carriers: Spin 1 Vector bosons
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• The SM describes our visible Universe by a (reasonably small) set of particles:
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Elementary Particles

• The particles that make up matter: Spin 1/2 Fermions

Quarks

Leptons

Underlying theories: QCD QED / weak interaction

➫ electroweak unification (GSW)

… plus the Higgs particle as a consequence of the mechanism to generate mass
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The Structure of the Standard Model
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• The electroweak part of the SM is based on the gauge group 
SU(2) x U(1)

• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)

• Left-handed fermion fields transform as doublets under SU(2) - right handed  
fermions as singlets (no coupling of right-handed fermions to W; V-A 
structure of the weak interaction)

• There are three fermion families

• A complex scalar Higgs field is added for mass generation through 
spontaneous symmetry breaking to give mass to the gauge bosons and 
fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson

• The electroweak SM describes in lowest order (“Born approximation) 
processes such as f1f2 -> f3f4 with only 3 free parameters: α, Gf, sin2θW
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The History of the Standard Model
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Experiment

“Particle Zoo”

~ 50 Years!
The Standard Model (and its components) has withstood all 
tests & attempts to break it / find inconsistencies!

τ
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Testing the Standard Model
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• The “vanilla” Standard Model (ignoring neutrino masses & mixings) has 18 free 
parameters that need to be measured

• 9 fermion masses (= couplings to the Higgs Field)


• 3 CKM mixing angles + 1 CKM phase


• 3 coupling constants (electromagnetic, weak, strong)


• 1 Z0 mass


• 1 Higgs mass

• Other measurable parameters, such as the Weinberg angle and the W mass 
can be calculated taking the 18 parameters as input: A direct possibility to test 
SM prediction


• In addition: Particles occur “in loops” and modify measurable properties and 
cross sections: Calculable - can be tested, and used to indirectly search for 
new particles
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The Tool for Precision Tests: e+e- Collisions
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• e+e- annihilation:

• point-like particles


• well-known quantum numbers and energies of initial and 
final states


• no hadronic (strong) interactions in and with initial state:


• no underlying or “remnant” event


• couplings << 1: calculable in perturbation theory

• Technical requirements:


• precise knowledge of e+e- energies (accelerator)


• precise knowledge of luminosity (special detectors)


• precise measurement & classification of all final states (detectors)

Precision
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Electron-Positron Colliders
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High-energy e+e- Colliders: SLC, LEP
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• For precision measurements:

• Need precise measurement of collider energy


• At LEP measured via resonant depolarisation of self-polarisation of beam which 
builds up over time (up to a beam energy of 55 GeV), extrapolation via flux-loop 
measurements beyond :


• Energy uncertainty at 90 GeV center of mass: 1.4 MeV


• Energy uncertainty at 200 GeV center of mass: 25 - 30 MeV


• For SM precision measurements: polarisation of beams valuable: A strength of 
linear accelerators: 80% e- polarisation at SLC - not possible at LEP

• SLC (1989 - 1999): Center-of-mass energy ~ 91 GeV (on the Z0 resonance)


• LEP: 1989 - 2000

• LEP I: Center-of-mass energy ~ 91 GeV (on the Z0 resonance)


• LEP II: Center-of-mass energy up to 209 GeV
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LEP in one Slide
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27 km circumference

maximum energy 209 GeV
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SLC in one Slide
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• e- up to 50 GeV; fixed-target program (until 1980ies)

• e- und e+  for PEP-I storage ring (Ecm = 29 GeV; early 1980ies)

• e- und e+  for SLC collider (Ecm = MZ  ~ 91 GeV; 1989 - 1999)

• e- und e+  for PEP-II storage ring (Ecm ~10 GeV; 1999 - 2008)
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Experiments at LEP
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• The beginning of the 
(very) large 
collaborations in 
particle physics: 
several 100 members 
(~ 300 - 700, changing 
with time)

International collaboration 
on a new scale, required 
tools for free exchange of 
information and data


One consequence: 
Invention of WWW at 
CERN in 1989
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e+e- Experiments: One Example - OPAL @ LEP
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e+e- Experiments: One Example - OPAL @ LEP
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Final States in e+e- Annihilation: 91+ GeV 
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Final States in e+e- Annihilation: LEP II
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Physics at LEP and SLC 
- a few Examples -
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The Hadronic Cross Section in e+e- Collisions

�18
Particle Physics with Accelerators and Natural Sources: 
SS 2019, 05: Precision Tests of the Standard Model



Frank Simon (fsimon@mpp.mpg.de)

Cross sections in Electroweak Interactions
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• The minimal SM in lowest order (“Born approximation” describes processes 
like:

by just three free parameters:

fine structure constant (electromagnetic interaction)
Fermi constant (weak interaction), obtained from µ lifetime 
weak mixing angle, obtained from neutrino - Nucleon scattering
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The Z0 Resonance
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• For resonant production through a Z, the width of the Z influences the cross 
section (Breit-Wiegner resonance):

c.o.m. energy total width partial widths

Maximum at:

The partial widths (decay into a given fermion pair) can be calculated in the SM:
color factor: 

3 for quarks, 1 for leptons

3rd component of weak isospin: (up-type q, ν +1/2, others -1/2)

Q: electric charge
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It’s not quite that simple: Initial State Radiation
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• The e+ and e- can radiate photons before colliding, changing the energy:

Initial state radiation (ISR)

Results in a change in the 
collision energy:

changes in cross section: 
Reduced since events move 
below resonance energy

Can be calculated precisely in QED!
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Precision Measurements at the Z
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• Determining the number of light 
neutrino flavors from the Z width:

MZ = 91.1875 ± 0.0021 GeV
ΓZ = 2.4952 ± 0.0023 GeV

This precision can not be reached at hadron  
colliders - LEP input used for calibration at LHC

Given by: 
ΓZ = Γee + Γμμ + Γττ + Γhad  

         + Γνeνe + Γνμνμ + Γντντ


        = 3 Γll + Γhad + Nν Γνν 

The partial width into visible final states 
can be directly measured

Taking the SM prediction for Γνν :from the 
measured cross section and total width 
the number of (light) neutrinos can be 
determined

Nν = 2.984 ± 0.008 
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Challenges imposed by Precision Goals
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• As the moon orbits the Earth it distorts the rock in the Geneva area very 
slightly !


• The nominal radius of the accelerator of 4.3 km varies by  ±0.15 mm 


• Changes beam energy by ~10 MeV : need to correct for tidal effects ! 

Moon

Trains

• Leakage currents from the TGV railway line 
return to Earth following the path of least 
resistance.


• Travelling via the Versoix river and using 
the LEP ring as a conductor.  


• Each time a TGV train passed by, a small 
current circulated LEP slightly changing the 
magnetic field in the accelerator 


• LEP beam energy changes by ~10 MeV
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Radiative Corrections
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non-photonic corrections:

photonic corrections:
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corrections ~ 100%, selection dependent;
factorisable:  (1 + δrad) 

corrections ~ 10%, selection independent;
can be absorbed in running couplings:
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Modifications of the Cross Sections by Corrections
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insertion of running couplings in “Born”-approximation :

•  Mt

•  MH

•  αs

partial Z decay widths                                                   (and also

cross sections) acquire dependence on:

€ 

Γf =
Gf Mz

3

6π 2
ga,f

2 + gv,f
2[ ]Nc,f

==> indirect determination (fit) of  Mt , MH , and αs from combination of all
available electroweak observables

(differential cross sections, partial decay widths, forward-backward
 asymmetries, τ-polarisation, left-right asymmetries (SLC))
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Beyond Cross Section Measurements
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• Differential cross sections

depends on γ and Z0 exchange & interference, spin orientations (helicities) of 
initial and final state, on resonance, ...

• Can be studied in a compact way as forward - backward asymmetries:

Sensitive to vector and axial-vector couplings: non-zero AFB because the 
coupling of the Z to lefthanded and righthanded particles is different 

(for pure QED interactions AFB  would be zero)
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Summary of Precision Measurements at LEP & SLC
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• Good overall 
consistency of a wide 
range of measurements 
with SM precision 
calculations observed

includes data from 
Tevatron: Mt, MW

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.385 ± 0.015 80.377
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012
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Indirect vs direct Measurements

• Indirect measurements use SM “as-is”, fitting unknown particle masses using 
radiative / loop corrections sensitive to these particles
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Top-Quark Mass   [GeV]

mt   [GeV]
160 170 180 190

χ2/DoF: 6.1 / 10

CDF 172.5 ± 1.0

D∅ 174.9 ± 1.4

Average 173.2 ± 0.9

LEP1/SLD 172.6 +  13.5172.6 −  10.4

LEP1/SLD/mW/ΓW 179.7 +  11.7179.7 −   8.7

March 2012

W-Boson Mass  [GeV]

mW  [GeV]
80 80.2 80.4 80.6

χ2/DoF: 0.1 / 1

TEVATRON 80.387 ± 0.016

LEP2 80.376 ± 0.033

Average 80.385 ± 0.015

NuTeV 80.136 ± 0.084

LEP1/SLD 80.362 ± 0.032

LEP1/SLD/mt 80.363 ± 0.020

March 2012
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Consistency of direct & indirect Mass Measurements
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Measuring Axial and Vector Couplings
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• Precision result on Vector and Axial-
vector couplings: Precision provided by 
LEP

LEP 2002
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Coupling of Vector Bosons
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• Coupling of vector bosons: A key 
element of the group structure of 
the SM


• Observed in energy dependence of 
W pair production cross section
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Searching for the Higgs @ LEP
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decay channel (e+e– –> HZ): background:

includes about 80% of all 
final states with about 
40-50% selection efficiencies

Production:

e
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Higgs Searches at LEP: History
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status July 2000: no hint for the Higgs;   MH > 113.3 GeV/c2  (95% CL)

5. Sept. 2000: ALEPH sees excess in 4-Jet channel, compatible with
MH ~ 115 GeV/c2.
LEP-combination:   2.2 σ excess over background

14. Sept. 2000: LEP-shutdown extended by 1 month, until 2. November 2000

3. Nov. 2000: further candidate events increase significance to 2.9 σ.
LEP-experiments ask for LEP run in 2001

8. Nov. 2000: LEP irrevocably shut down.

[final status July 2001:   MH > 114.1 GeV/c2]

[status July 2001:   after re-analyses (calibration) only 2.1 σ !]
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An Event that got People excited…
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candidate event: e+e- -> HZ -> bbjj
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Indirect Higgs Constraints before LHC
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• Constraints from global fits, using radiative corrections that are sensitive to H

* MH < 185 GeV (95% c.l.)

*
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Indirect & Direct Higgs Constraints pre-2012
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indirect: radiative corrections: MH < 186 (157) GeV/c2  (95% CL)
from direct search:  114.1(LEP) 115.5 (LHC) < MH < 131 GeV/c2 (LHC) 
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Δ
χ2
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excluded

LHC
excluded

Δαhad =Δα(5)

0.02750±0.00033
0.02749±0.00010
incl. low Q2 data

Theory uncertainty
March 2012 mLimit = 152 GeV

July 2012: Higgs discovered at LHC;  2015: MH = 125.09 ± 0.24 GeV
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Direct & Indirect: Comparison
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• Direct and indirect mass 
measurements in good 
agreement


• After LEP2 it was clear 
that the (SM) Higgs had 
to be light!

(mt, mw measured)

(fit, from rad. corr.)
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March 2012
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A Word on the Future

• Currently discussing the Update of the European Strategy for Particle Physics

• Main focus: Plans for post-LHC colliders
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The emerging consensus: Highest priority for an e+e- collider to 
explore the Higgs particle with highest precision

• Access to various Higgs properties via several production mechanisms


• Different energy to access different processes - from 250 GeV to 1 TeV and beyond
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Summary
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• The (electroweak) Standard Model combines QED and the weak interaction theory 
to describe electromagnetic and weak interactions - based on the Gauge Group 
SU(2) x U(1)


• It has been extremely successful in describing all observations to date


• Measurements at e+e- colliders (LEP, SLC) have been crucial to prove the validity of 
the Standard Model 


• The detailed study of the Z0 in particular has provided key information


• 3 families


• Vector and axial-vector couplings


• ...


• All together: Allowed to make prediction for not yet observed particles: Top 
Quark, Higgs

• All particles in the SM now observed, no obvious “crack” found to date

Next Lecture: 03.06., “Neutrinos: Freeze out, cosmological 
implications, structure formation”, B. Majorovits
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Lecture Overview
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29.04. Introduction & Recap: Particle Physics & Experiments F. Simon

06.05. Dark Matter axions and ALPs: Where do they come from? B. Majorovits

13.05. Axions and ALPs detection B. Majorovits

20.05. Dark Matter WIMPs - origin and searches B. Majorovits

27.05. Precision Tests of the Standard Model F. Simon

03.06. Neutrinos: Freeze out, cosmological implications, structure formation B. Majorovits

Pentecost

17.06. Natural Neutrino Sources: What can we learn from them? B. Majorovits
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