Particle Physics with Accelerators and Natural Sources

05. Precision Tests of the Standard Model

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) 27.05.2019

Dr. Frank Simon Dr. Bela Majorovits

Overview

- The Standard Model: Intro & History
- e⁺e⁻ collisions for precision tests
- The Z⁰ resonance
- Direct and indirect measurements

Reminder: The Standard Model

- The SM describes our visible Universe by a (reasonably small) set of particles:
 - The particles that make up matter: Spin 1/2 Fermions
 - ... and the force carriers: Spin 1 Vector bosons

Elementary Particles				Elen		
	1	Generatio 2	n 3		exchange boson	relative strength
Quarks	u	С	t	Strong	g	1
	d	S	b	elmagn.	γ	1/137
Leptons	v _e	V _µ	ν _τ	Weak	W±, Zº	10 -14
	е	μ	τ	Gravitation	G	10 -40

... plus the Higgs particle as a consequence of the mechanism to generate mass

Underlying theories:

QCD

QED / weak interaction

The Structure of the Standard Model

- The electroweak part of the SM is based on the gauge group SU(2) x U(1)
- This gives rise to the gauge bosons W⁺, W⁻, Z for SU(2) and γ for U(1)
- Left-handed fermion fields transform as doublets under SU(2) right handed fermions as singlets (no coupling of right-handed fermions to W; V-A structure of the weak interaction)
- There are three fermion families
- A complex scalar Higgs field is added for mass generation through spontaneous symmetry breaking to give mass to the gauge bosons and fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson
- The electroweak SM describes in lowest order ("Born approximation) processes such as $f_1f_2 \rightarrow f_3f_4$ with only 3 free parameters: α , G_f , $sin^2\theta_W$

The History of the Standard Model

Theory

The Standard Model (and its components) has withstood all tests & attempts to break it / find inconsistencies!

Testing the Standard Model

- The "vanilla" Standard Model (ignoring neutrino masses & mixings) has 18 free parameters that need to be measured
 - 9 fermion masses (= couplings to the Higgs Field)
 - 3 CKM mixing angles + 1 CKM phase
 - 3 coupling constants (electromagnetic, weak, strong)
 - 1 Z⁰ mass
 - 1 Higgs mass
- Other measurable parameters, such as the Weinberg angle and the W mass can be calculated taking the 18 parameters as input: A direct possibility to test SM prediction
- In addition: Particles occur "in loops" and modify measurable properties and cross sections: Calculable - can be tested, and used to indirectly search for new particles

The Tool for Precision Tests: e+e- Collisions

- e+e- annihilation:
 - point-like particles
 - well-known quantum numbers and energies of initial and final states
 - no hadronic (strong) interactions in and with initial state:
 - no underlying or "remnant" event
 - couplings << 1: calculable in perturbation theory

- Technical requirements:
 - precise knowledge of e⁺e⁻ energies (accelerator)
 - precise knowledge of luminosity (special detectors)
 - precise measurement & classification of all final states (detectors)

Electron-Positron Colliders

High-energy e+e- Colliders: SLC, LEP

- SLC (1989 1999): Center-of-mass energy ~ 91 GeV (on the Z⁰ resonance)
- LEP: 1989 2000
 - LEP I: Center-of-mass energy ~ 91 GeV (on the Z⁰ resonance)
 - LEP II: Center-of-mass energy up to 209 GeV
- For precision measurements:
 - Need precise measurement of collider energy
 - At LEP measured via resonant depolarisation of self-polarisation of beam which builds up over time (up to a beam energy of 55 GeV), extrapolation via flux-loop measurements beyond :
 - Energy uncertainty at 90 GeV center of mass: 1.4 MeV
 - Energy uncertainty at 200 GeV center of mass: 25 30 MeV
 - For SM precision measurements: polarisation of beams valuable: A strength of linear accelerators: 80% e⁻ polarisation at SLC - not possible at LEP

9

LEP in one Slide

27 km circumference maximum energy 209 GeV

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

SLC in one Slide

• e⁻ und e⁺ for PEP-II storage ring (E_{cm} ~10 GeV; 1999 - 2008)

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Experiments at LEP

The beginning of the (very) large collaborations in particle physics: several 100 members (~ 300 - 700, changing with time)

International collaboration on a new scale, required tools for free exchange of information and data

One consequence: Invention of WWW at CERN in 1989

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

e+e- Experiments: One Example - OPAL @ LEP

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Ap. Dg > 1t

e+e- Experiments: One Example - OPAL @ LEP

Particle Physics with Accelerators and Natural Sources:SS 2019, 05: Precision Tests of the Standard Model

Final States in e⁺e⁻ Annihilation: 91+ GeV

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Final States in e⁺e⁻ Annihilation: LEP II

Physics at LEP and SLC - a few Examples -

The Hadronic Cross Section in e+e- Collisions

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Cross sections in Electroweak Interactions

 The minimal SM in lowest order ("Born approximation" describes processes like:

 $e^{+}e^{-} \rightarrow ff$

by just three free parameters:

 $\propto_{\mathcal{CM}}$ fine structure constant (electromagnetic interaction) $\mathscr{G}_{\mathcal{F}}$ Fermi constant (weak interaction), obtained from μ lifetime $s_{n}^{2}\mathcal{Q}_{\nu}$ weak mixing angle, obtained from neutrino - Nucleon scattering

The Z⁰ Resonance

• For resonant production through a Z, the width of the Z influences the cross section (Breit-Wiegner resonance):

$$\begin{aligned}
\mathbf{O}\left(e^{t}e^{-}\Rightarrow \vec{z} \rightarrow f\vec{t}\right) &= \frac{42\pi}{m_{2}^{2}} \underbrace{\int_{cs-m_{2}^{2}}^{s} \int_{cs-m_{2}^{2}}^{s} \int_{cs-m_{2}^{2}}^{r} \int_{cs-m_{2}$$

The partial widths (decay into a given fermion pair) can be calculated in the SM:

It's not quite that simple: Initial State Radiation

• The e⁺ and e⁻ can radiate photons before colliding, changing the energy:

Precision Measurements at the Z

This precision can not be reached at hadron colliders - LEP input used for calibration at LHC

• Determining the number of light neutrino flavors from the Z width:

Given by: $\Gamma_{Z} = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had}$ $+ \Gamma_{veve} + \Gamma_{v\mu\nu\mu} + \Gamma_{v\tau\nu\tau}$ $= 3 \Gamma_{II} + \Gamma_{had} + N_{v} \Gamma_{vv}$

The partial width into visible final states can be directly measured

Taking the SM prediction for Γ_{vv} : from the measured cross section and total width the number of (light) neutrinos can be determined

$$N_v = 2.984 \pm 0.008$$

Challenges imposed by Precision Goals

- As the moon orbits the Earth it distorts the rock in the Geneva area very slightly !
- The nominal radius of the accelerator of 4.3 km varies by ± 0.15 mm
- Changes beam energy by ~10 MeV : need to correct for tidal effects !

- Leakage currents from the TGV railway line return to Earth following the path of least resistance.
- Travelling via the Versoix river and using the LEP ring as a conductor.
- Each time a TGV train passed by, a small current circulated LEP slightly changing the magnetic field in the accelerator
- LEP beam energy changes by ~10 MeV

Moon

Radiative Corrections

Modifications of the Cross Sections by Corrections

insertion of running couplings in "Born"-approximation :

partial Z decay widths
$$\Gamma_{\rm f} = \frac{G_{\rm f} M_z^3}{6\pi\sqrt{2}} [g_{\rm a,f}^2 + g_{\rm v,f}^2] N_{\rm c,f}$$
 (and also
cross sections) acquire dependence on: • M_t
• $M_{\rm H}$
• $\alpha_{\rm s}$

==> indirect determination (fit) of M_t , M_H , and α_s from combination of all available electroweak observables

(differential cross sections, partial decay widths, forward-backward asymmetries, τ -polarisation, left-right asymmetries (SLC))

Beyond Cross Section Measurements

Differential cross sections

$$d \overline{\sigma_{f}} \times \overline{H} \cdot (1 + \cos^{2} \theta) + B \cdot \cos \theta$$

 $d \cos \theta$

depends on γ and Z0 exchange & interference, spin orientations (helicities) of initial and final state, on resonance, ...

• Can be studied in a compact way as forward - backward asymmetries:

Sensitive to vector and axial-vector couplings: non-zero A_{FB} because the coupling of the Z to lefthanded and righthanded particles is different (for pure QED interactions A_{FB} would be zero)

Summary of Precision Measurements at LEP & SLC

Good overall consistency of a wide range of measurements with SM precision calculations observed

includes data from Tevatron: M_t, M_W

March 2012

Indirect vs direct Measurements

 Indirect measurements use SM "as-is", fitting unknown particle masses using radiative / loop corrections sensitive to these particles

Consistency of direct & indirect Mass Measurements

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Measuring Axial and Vector Couplings

Coupling of Vector Bosons

- Coupling of vector bosons: A key element of the group structure of the SM
- Observed in energy dependence of W pair production cross section

Searching for the Higgs @ LEP

status July 2000: no hint for the Higgs; $M_H > 113.3 \text{ GeV/c}^2$ (95% CL) [final status July 2001: $M_H > 114.1 \text{ GeV/c}^2$]

- 5. Sept. 2000: ALEPH sees excess in 4-Jet channel, compatible with $M_H \sim 115 \text{ GeV/c}^2$. LEP-combination: 2.2 σ excess over background
- 14. Sept. 2000: LEP-shutdown extended by 1 month, until 2. November 2000
- 3. Nov. 2000:further candidate events increase significance to 2.9 σ.
LEP-experiments ask for LEP run in 2001[status July 2001: after re-analyses (calibration) only 2.1 σ!]

8. Nov. 2000: LEP irrevocably shut down.

An Event that got People excited...

Particle Physics with Accelerators and Natural Sources: SS 2019, 05: Precision Tests of the Standard Model

Indirect Higgs Constraints before LHC

• Constraints from global fits, using radiative corrections that are sensitive to H

	- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -	
	LEP including LEP-II m _W , Γ _W	all Z-pole data	all Z-pole data plus m _t	all Z-pole data plus m _W , Γ _W	all data except NuTeV	all data	
$m_{\rm t}$ [GeV]	184^{+13}_{-11}	171^{+11}_{-9}	$173.6^{+4.7}_{-4.6}$	180^{+11}_{-9}	$175.4_{-4.2}^{+4.3}$	$174.3^{+4.5}_{-4.3}$	*
$m_{\rm H}$ [GeV]	228^{+367}_{-136}	81^{+107}_{-40}	99^{+64}_{-40}	117^{+161}_{-63}	78^{+48}_{-31}	81^{+52}_{-33}	
$\log(m_{\rm H}/{\rm GeV})$	$2.36\substack{+0.42\\-0.39}$	$1.91\substack{+0.37\\-0.30}$	$1.99_{-0.23}^{+0.22}$	$2.07^{+0.38}_{-0.33}$	$1.89_{-0.22}^{+0.21}$	$1.91\substack{+0.22\\-0.23}$	
$\alpha_{\rm S}(m_{\rm Z}^2)$	0.1199 ± 0.0030	0.1186 ± 0.0027	0.1187 ± 0.0027	0.1185 ± 0.0027	0.1181 ± 0.0027	0.1183 ± 0.0027	
$\chi^2/{\rm d.o.f.}~(P)$	13.3/9~(15%)	14.8/10 (14%)	14.9/11~(19%)	17.9/12~(12%)	20.5/14~(11%)	29.7/15~(1.3%)	
$\sin^2 \theta_{\text{eff}}^{\text{lept}}$	0.23160	0.23145	0.23145	0.23135	0.23131	0.23136	
	± 0.00018	± 0.00016	± 0.00016	± 0.00015	± 0.00015	± 0.00015	
$\sin^2 \theta_{\rm W}$	0.22284	0.22313	0.22299	0.22240	0.22255	0.22272	
	± 0.00053	± 0.00063	± 0.00045	± 0.00045	± 0.00036	± 0.00036	
$m_{\mathbf{W}}$ [GeV]	80.388 ± 0.027	80.373 ± 0.032	80.380 ± 0.023	80.410 ± 0.023	80.403 ± 0.019	80.394 ± 0.019	

Table 16.2: Results of the fits to: (1) LEP data alone, (2) all Z-pole data (LEP-1 and SLD), (3) all Z-pole data plus direct $m_{\rm W}$ and direct $\Gamma_{\rm W}$ determinations, (5) all data (including APV) except NuTeV, and (6) all data. As the sensitivity to $m_{\rm H}$ is logarithmic, both $m_{\rm H}$ as well as log($m_{\rm H}/{\rm GeV}$) are quoted. The bottom part of the table lists derived results for $\sin^2 \theta_{\rm eff}^{\rm lept}$, $\sin^2 \theta_{\rm W}$ and $m_{\rm W}$. See text for a discussion of theoretical errors not included in the errors above.

* M_H < 185 GeV (95% c.l.)

Indirect & Direct Higgs Constraints pre-2012

from direct search: 114.1(LEP) 115.5 (LHC) $< M_H < 131 \text{ GeV/}c^2$ (LHC)

..... indirect: radiative corrections: $M_H < 186 (157) \text{ GeV/c}^2 (95\% \text{ CL})$

Direct & Indirect: Comparison

(m_t, m_w measured) (fit, from rad. corr.)

- Direct and indirect mass measurements in good agreement
- After LEP2 it was clear that the (SM) Higgs had to be light!

A Word on the Future

- Currently discussing the Update of the European Strategy for Particle Physics
 - Main focus: Plans for post-LHC colliders

The emerging consensus: Highest priority for an e⁺e⁻ collider to explore the Higgs particle with highest precision

- Access to various Higgs properties via several production mechanisms
- Different energy to access different processes from 250 GeV to 1 TeV and beyond

Summary

- The (electroweak) Standard Model combines QED and the weak interaction theory to describe electromagnetic and weak interactions - based on the Gauge Group SU(2) x U(1)
- It has been extremely successful in describing all observations to date
- Measurements at e⁺e⁻ colliders (LEP, SLC) have been crucial to prove the validity of the Standard Model
- The detailed study of the Z⁰ in particular has provided key information
 - 3 families
 - Vector and axial-vector couplings
 - ...
- All together: Allowed to make prediction for not yet observed particles: Top Quark, Higgs
 - All particles in the SM now observed, no obvious "crack" found to date

Next Lecture: 03.06., "Neutrinos: Freeze out, cosmological implications, structure formation", B. Majorovits

Lecture Overview

29.04.	Introduction & Recap: Particle Physics & Experiments				
06.05.	Dark Matter axions and ALPs: Where do they come from?				
13.05.	Axions and ALPs detection				
20.05.	Dark Matter WIMPs - origin and searches				
27.05.	Precision Tests of the Standard Model	F. Simon			
03.06.	Neutrinos: Freeze out, cosmological implications, structure formation	B. Majorovits			
	Pentecost				
17.06.	Natural Neutrino Sources: What can we learn from them?	B. Majorovits			
24.06.	Accelerator Neutrinos	F. Simon			
01.07.	Precision Experiments with low-energy accelerators	F. Simon			
08.07.	Neutrinoless Double Beta Decay	B. Majorovits			
15.07.	Gravitational Waves	F. Simon			
22.07.	Physics with Flavor: Top and Bottom	F. Simon			

