POWRACE Electroweak and Strong corrections to The drell-yan process

Davide Pagani 2nd November 2009

THE DRELL-YAN PROCESS $p_{p}^{(-)} \rightarrow \gamma, Z \rightarrow l^{+}l^{-}$ Neutral current

Calibration of the detector

Electroweak mixing angle

$$p \stackrel{(-)}{p} \rightarrow W \rightarrow l \stackrel{(-)}{\nu}_l$$

Mass mw and decay width of the W boson (indirect bounds on mHIGGS)

Constraints on the partonic distributions

Possible signals of new physics

Charged current

$\Delta m_W = 15 \, \mathrm{MeV}$

EXPERIMENTAL ERROR AT LHC

Fit of the experimental data for the transverse mass

$$M_t = \sqrt{2|p_{t,\nu_l}||p_{t,l}|(1 - \cos(\Delta\phi))}$$

THE EVENT GENERATOR

Energy in the hadronic C.M.F.?

Initial hadrons? Final leptons?

Experimental cuts on leptons?

Theoretical assumptions?

EVENTS

Simulations of the collisions, describing the partonic subprocess. **Momentum** and other physical observables are listed for **every particle** involved in the process.

Accuracy of theoretical calculation

Experimental set-up

Efficiency of the generator

BORN HADRONIC PROCESS

POWRACE (NLO α)+(NLO+LL α_s)

NLO 1n α_s Dimensional regularization with massless partons $q \bar{q}
ightarrow l
u^{(-)}$ $2Re(\mathcal{M}_{born}\mathcal{M}^*_{virt})$ m J NO ULTRAVIOLET divergences, but there are: •SOFT, COLLINEAR, SOFT&COLLINEAR divergences $q\bar{q} \rightarrow l\bar{\nu} + q$ 00000 $\mathcal{M}_{real}|^2$ 00000000 there are: COLLINEAR, SOFT&COLLINEAR divergences SOFT, CANCELLATION OF THE COLLINEAR DIVERGENCES ONLY **AT HADRONIC LEVEL!!**

PARTON SHOWER

In order to generate events, we need an **exclusive** description of final states, not an inclusive one

Approximation and factorization can be iterated

NLO ACCURACY+ EXCLUSIVE DESCRIPTION OF THE EVENTS WITH HARD PARTONS

 $k_t > p_t^{min}$

EVENT WITH PARTONS

 $k_t < p_t^{min}$

EVENT WITHOUT PARTONS

POWHEG MAKES THE **FIRST STEP** OF THE SHOWERING PROCESS: IT MUST BE COMUNICATED TO **AVOID DOUBLE COUNTING**

MATCHING NLO+LL, WITHOUT DEPENDENCE ON ANY SHOWER MONTECARLO

NLO in α Every particle electroweakly interacts $\mathcal{M}^*_{virtual}$

HORACE C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, *Precision electroweak calculation* of the charged current Drell-Yan process, JHEP 0612:016,2006, arXiv:hep-ph/0609170

 $d\sigma_{NLO} = [|\mathcal{M}_{born}|^2 + 2Re(\mathcal{M}_{born}\mathcal{M}^*_{virtual})]d\Phi_0 + |\mathcal{M}_{real}|^2d\Phi_1$

POWRACE

 $\sigma_{NLO(\alpha_s)} + \sigma_{NLO(\alpha)} - \sigma_0 = \sigma_0 + \sigma_0 + \sigma_\alpha + \sigma_{\alpha_s} - \sigma_0 = \sigma_{NLO(\alpha_s,\alpha)}$

Removing Born contribution from HORACE

- EVENT WITH A HARD PHOTON: The weight is computed using tree level approximation
- EVENT WITHOUT PHOTONS: The weight takes into account only soft+virtual corrections to $pp \to W \to l\nu_l$, so it could be negative

EVENT CLASSIFICATION BASED ON PHYSICAL OBSERVABLES

- EVENTS WITH A PHOTON: there is an hard photon $E_{\gamma} > \Delta E$ $\mathcal{O}(\alpha)$
- EVENTS WITHOUT A PHOTON: the photon is undetectable because $E_{\gamma} < \Delta E$ or there isn't really any photon Born + $\mathcal{O}(\alpha)$ These events are subdivided again into:

EVENTS WITH AN EMITTED PARTON: jet can be seen by the $\mathcal{O}(\alpha_s)$ detector $p_{t,jet} > p_{t,min}$

– EVENTS WITHOUT EMITTED PARTON: the jet is undetectable because $p_{t,jet} < p_{t,min}$ or there isn't really any emitted parton.

1 photon contribution(RACE)

$$d\sigma_{RACE} = \sum_{i,j} \int dx_1 dx_2 f_{q_i}(x_1, M^2) f_{q_j}(x_2, M^2) \left[|\tilde{\mathcal{M}}_1|^2 d\Phi_1 + d\sigma_{\alpha}^{sub, H} \right]$$

0 photon electroweak soft+virtual contribution

$$\sum_{i,j} \int dx_1 dx_2 f_{q_i}(x_1, M^2) f_{q_j}(x_2, M^2) F_{HOR}(\Phi_0) d\sigma_0$$
$$F_{HOR} := \left[\tilde{C}_{\alpha} + C_{\alpha}^{sub} - \left(\frac{\Delta f_{q_i}(x_1, M^2)}{f_{q_i}(x_1, M^2)} + \frac{\Delta f_{q_j}(x_2, M^2)}{f_{q_j}(x_2, M^2)} \right) \right]$$

$$d\sigma_{_{POWHEG}} = \sum_{q\bar{q}} \bar{B}_{q\bar{q}}(\Phi_2) d\Phi_2 \left\{ \Delta_{q\bar{q}}(\Phi_2, p_t^{min}) + \Delta_{q\bar{q}}(\Phi_2, k_t(\Phi_3)) \frac{R_{q\bar{q}}(\Phi_3)}{B_{q\bar{q}}(\Phi_2)} d\Phi_{rad} \right\}_{\bar{\Phi}_2 = \Phi_2}$$

$$\bar{B}_{q\bar{q}}(\Phi_2) = \sum_{q\bar{q}} \left\{ [B_{q\bar{q}}(\Phi_2) + V_{q\bar{q}}(\Phi_2)] + \dots \right\}$$

$$V_{q\bar{q}}(\Phi_2) \to V_{q\bar{q}}^{HOR}(\Phi_2) = V_{q\bar{q}}(\Phi_2) + B_{q\bar{q}}F_{HOR}$$

NUMERICAL TEST, obtained results:

• Cross sections must **not depend** on ϵ .

 429.1 ± 0.6

0.00001

 810.7 ± 0.5

 1239.9 ± 0.8

• Soft+virtual contributions calculated by POWRACE and HORACE must be compatible.

$\epsilon = 0.0005$]	$c = \Lambda E / E$	
$0 \sigma_0$	(HORACE)	981.6 ± 0.9		$\epsilon = \Delta L / L$	
1 $\sigma_0 + \sigma_{\alpha,SV}$	(HORACE)	767.2 ± 1.2			
$2 \sigma_0 + \sigma_{\alpha_s}$	(POWRACE)	1185.7 ± 0.8			
$3 \sigma_0 + \sigma_{\alpha_s} + \sigma_{\alpha,SV}$	/ (POWRACE)	970.4 ± 0.6			
$(0)-(1) = \sigma_{\alpha,SV,HORACE} = 214.4 \pm 1.5$					
$(2)-(3) = \sigma_{\alpha,SV,POWRACE} = 215,3 \pm 1$				Compatibility within	
				Compatibility within	
$\epsilon = 0.00001$				numerical errors	
$0 \sigma_0$	(HORACE)	981.6 ± 0.9			
$1 \sigma_0 + \sigma_{\alpha,SV}$	(HORACE)	608.4 ± 1.0			
$2 \sigma_0 + \sigma_{\alpha_s}$	(POWRACE)	1185.7 ± 0.8			
$3 \sigma_0 + \sigma_{\alpha_s} + \sigma_{\alpha,SV}$	(POWRACE)	810.7 ± 0.5	,		
$(0)-(1) = \sigma_{\alpha,SV,HORACE} = 373.2 \pm 1.7$					
$(2)-(3) = \sigma_{\alpha,SV,POWRACE} = 375,0 \pm 0.9$					
			_		
ϵ σ_{RACE}	σ_{POW}	$\sigma_{POWRACE}$			
0.0005 269.7 ±	$0.3 970.4 \pm 0.6$	1240.1 ± 0.7			

EXPERIMENTAL SET-UP SIMULATED:

(a) TRANSVERSE MOMENTUM OF THE LEPTON (pb/GeV)

(b) LEPTON RAPIDITY (pb)

(c) TRANSVERSE MASS(pb/GeV)

(d) W BOSON RAPIDITY (pb)

Tevatron W⁻

Strong corrections Strong and electroweak NLO corrections

Tevatron W⁺

Strong corrections Strong and electroweak NLO corrections

LHC W⁺

Strong corrections Strong and electroweak NLO corrections

CONCLUSION

For the first time a single generator **(POWRACE)** includes **QCD and EW NLO** corrections. Events receive **QCD LL** corrections after the showering process.

Plots are compatible with:

G. Balossini, C.M. Carloni Calame, G. Montagna, M. Moretti, O. Nicrosini, F. Piccinini, M. Treccani, A. Vicini, *Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC,* [arXiv:hep-ph/09070276]

Possible developements:

-Extension to the neutral current channel

-Inclusion of the electroweak LL approximation for multiphotonic radiation

-Complete analysis of EW and QCD combined effects

-High precision analysis of physical observables

Thank you for your attention