Track based Alignment for the Belle/Belle II vertex detector

Martin Ritter

14th IMPRS Workshop Munich, 2 November 2009

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Motivation

Belle/Belle II Experiment

Track-based Alignment

Conclusions

Martin Ritter Track based Alignment f

Track based Alignment for the Belle/Belle II vertex detector

P Violation Neasurement of CP-Violation

CP Violation

- CP violated in weak interactions
- represented by non-vanishing complex phase in the weak mixing matrix (CKM model, Nobel Prize 2008 for Kobayashi & Maskawa)

$$\begin{pmatrix} |\mathbf{d}'\rangle\\ |\mathbf{s}'\rangle\\ |\mathbf{b}'\rangle \end{pmatrix} = \underbrace{\begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}}_{\mathbf{C}_{CKM}} \begin{pmatrix} |\mathbf{d}\rangle\\ |\mathbf{s}\rangle\\ |\mathbf{b}\rangle \end{pmatrix}$$

Precision Measurement of CP-Violation

- verification of the CKM model
- search for new sources of CP Violation => New Physics
- ▶ B mesons show large CP-Violation, well suited for CP measurements
- high statistics and precision needed to challenge SM

Motivation

Belle/Belle II Experiment Track-based Alignment Conclusions CP Violation Measurement of CP-Violatior

Measurement of CP-Violation

time dependent decay asymmetry

$$\mathsf{a}_{CP}(t) = \frac{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) - \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) + \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}$$

Experimental challenging

- lifetime of B mesons is 1.5 ps
- flavour of B meson has to be known

Solution

- one B to determine flavour (tag side), other B for CP measurement (CP side)
- boost system using asymmetric beam energies

$$t
ightarrow \Delta t = rac{\Delta z}{\langle eta \gamma
angle c}$$

Belle II Vertex Detector Current Belle Alignment Alignment with $e^+e^- o \mu^-\mu^-$

Belle/Belle II Experiment

- ▶ asymmetric e^+e^- experiment at the $\Upsilon(4S)$ resonance (10.58 GeV)
- KEKB peak luminosity of $2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record)
- ▶ 946 fb⁻¹ integrated luminosity since 1999 (772 million $B\overline{B}$ pairs)
- upgrade to SuperKEKB/Belle II 2010-2013 (target luminosity: 8 × 10³⁵ cm⁻²s⁻¹)

Belle II Vertex Detector Current Belle Alignment Alignment with $e^+e^- \rightarrow \mu^-$

Belle II Vertex Detector

SuperSVD + DEPFET PXD

- 2 layer pixel-detector mounted directly on the beampipe
- 4 layer double-sided strip-detector attached to the CDC
- mechanically independent subsystems
- frequent and large relative movements possible

frequent, time-dependent alignment needed

Global alignment of the BABAR SVT

Belle II Vertex Detector Current Belle Alignment Alignment with $e^+e^- \rightarrow \mu^-\mu^-$

Current Belle Alignment

Current SVD2

- 4 Layer DSSD
- 246 Modules

Alignment of the SVD2 using cosmic muons without magnetic field

- 1. internal alignment of all 246 Modules with respect to each other
- 2. global alignment of rigid SVD with respect to CDC
- 3. lorentz-shift correction using run cosmics

Limitations

- dedicated cosmic runs needed
- at most 2 distinct alignment runs a year
- statistics will not increase with luminosity of collider

Belle II Vertex Detector Current Belle Alignment Alignment with e $^+ {
m e}^- o \mu^- \mu^+$

Alignment with $e^+e^- \rightarrow \mu^-\mu^+$

Goal

Implementation of a new alignment procedure for the Belle SVD2 using mainly muon pairs from e^+e^- annihilation as preparation for Belle II

high statistics

$$\begin{aligned} \sigma(\mathsf{e}^+\mathsf{e}^- \to \mu^+\mu^-) &\approx 0.77 \,\mathrm{nb} \\ &\sim 15 \,\mathrm{s}^{-1} \,\mathfrak{O} \, 2 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \\ &\sim 600 \,\mathrm{s}^{-1} \,\mathfrak{O} \, 8 \times 10^{35} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \end{aligned}$$

- ► large transverse momentum $p_t \gtrsim 2 \, \text{GeV}$
- back to back in center of mass system
- not back to back in Lab system (asymmetric energies, crossing angle)

nternal Alignment SVD2 Performance Weak modes

Track-based Alignment

Necessary to determine absolute position of every detector module

- wrong positions will distort/degrade residual distribution
- minimize residuals by adjusting module position
- ▶ 6 degrees of freedom per module (3 translation + 3 rotation)

Residual ϵ : Distance hit \Leftrightarrow track

- ideal: residuals normal distributed mean 0, width σ_r
 - but: real wafer position not known assembly precision $\sim 100\,\mu\text{m}$, no guaranteed time stability.

nternal Alignment SVD2 Performance Weak modes

Track-based Alignment

- ▶ a = alignment parameters
- au =track parameters

$$\chi^{2}(\mathbf{a}, \boldsymbol{\tau}) = \boldsymbol{\epsilon}(\mathbf{a}, \boldsymbol{\tau})^{T} V^{-1} \boldsymbol{\epsilon}(\mathbf{a}, \boldsymbol{\tau})$$
$$\chi^{2}(\mathbf{a}, \boldsymbol{\tau}) = \sum_{i \in tracks} \sum_{j \in hits} \left(\frac{track(\mathbf{a}, \boldsymbol{\tau}_{i}) - hit_{j}}{\sigma_{j}} \right)^{2}$$

Solution for linearized χ^2

$$\underbrace{\left(\mathbf{J}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{J}\right)}_{\mathbf{C}}\begin{pmatrix}\mathbf{\Delta}\mathbf{a}\\\delta\boldsymbol{\tau}\end{pmatrix}=\underbrace{\left(\mathbf{J}^{\mathsf{T}}\mathbf{V}^{-1}\boldsymbol{\epsilon}(\mathbf{a}_{0},\boldsymbol{\tau}_{0})\right)}_{\mathbf{b}}$$

local alignment:

- neglect correlations between modules
- keep track parameters fixed
- χ^2 -function per module
- small matrices (6 × 6)
- iteration needed to account for correlations

global alignment (Millepede):

- ▶ one global χ^2 -function
- all correlations taken into account
- "large" set of equations (1476 × 1476 for Belle, similar for Belle II)

nternal Alignment SVD2 Performance Weak modes

Internal Alignment

Current Status

- internal alignment of all the 246 Belle SVD2 modules
- no alignment with respect to the CDC yet
- single tracks from muon 10⁶ pair events
- simulated misalignment of 30 μ m (0.3 mrad) for all modules.

hternal Alignment SVD2 Performance Weak modes

Remaining misalignment per parameter

- 6 Monte Carlo studies performed
- significant improvement for all degrees of freedom
- global misalignment remaining
- low sensitivity for rotations around long module axis

remaining misalignment for translations

Track-based Alignment

Remaining misalignment per parameter

remaining misalignment for rotations

 $^{2}(f) \Delta \gamma$

4 5 6

nternal Alignment SVD2 Performance Neak modes

SVD2 Performance

Impact parameters obtained from cosmic muons

nternal Alignment SVD2 Performance Weak modes

SVD2 Performance

Impact parameters obtained from cosmic muons

nternal Alignment SVD2 Performance Neak modes

SVD2 Performance

Impact parameters obtained from cosmic muons

nternal Alignment VD2 Performance Veak modes

Weak modes

- depending on input: matrix C (almost) singular
- undefined (or weak) modes which do not change χ² but may introduce physics bias

Further studies needed to optimise stability

- optimization of track sample
- pair fit of muons to improve correlations
- matrix regularisation: minimize alignment parameters in addition to residuals
- additional constraints (prior knowledge, survey data)

Conclusions

- internal alignment working
- Iow computing requirements
 - \sim 3 h to collect residuals from 10^6 events ($\sim\!\!3$ days of data-taking in Belle) \sim 2 min to do the actual alignment
- complete weekly alignment seems possible for Belle
- external alignment much faster (only 6 degrees of freedom)
- increased Belle II luminosity will further decrease time needed for data-taking

plans for the future

- external alignment with respect to the CDC
- simulation of larger misalignment
- further optimization of track sample selection
- pair-fit of muon pairs

Backup

Unitarity Triangle

- unitarity of CKM matrix leads to column constraints $\sum_{k} V_{ik} V_{jk}^* = 0$
- triangles in complex space
- almost degenerate in Kaon system, large angles in B meson system

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3)$$

$$\begin{split} \overline{\rho} &= \left(1 - \frac{\lambda^2}{2}\right)\rho & \overline{\eta} = \left(1 - \frac{\lambda^2}{2}\right)\eta \\ \phi_1 &= \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) & \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \\ \phi_3 &= \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{vd}V_{ub}^*}\right) \end{split}$$

CP Observables

time dependent decay asymmetry

$$a_{CP}(t) = \frac{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) - \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) + \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}$$

3 possible contributions

- CP-Violation in decay (direct)
- CP-Violation in mixing (indirect)
- CP-Violation by interference of mixing and decay (mixing induced)

For B mesons, contributions from indirect CP-Violation are negligible

Muon Pair Distributions

Millepede

Alignment

Solve set of linear equations with large number of parameters

$$C\begin{pmatrix}\Delta a\\\delta au\end{pmatrix} = b$$

• $\mathbf{C} = \mathbf{J}^T \mathbf{V}^{-1} \mathbf{J}$ very large, \sim millions of rows.

- simultaneous minimization of residuals with respect to alignment and track parameters
- not interested in corrections for tracks

Millepede/Millepede II

- program package to solve special χ^2 -problems
- used for the alignment by H1, HERA-B, CDF, LHCb and CMS
- ▶ optimized for up to O(50000) parameters
- reduction of matrix size using Schur complement

Matrix reduction

Any set of linear equations with invertible submatrix \mathbf{C}_{22}

can be solved using the Schur complement $\bm{S} = \bm{C}_{11} - \bm{C}_{21}^{\mathcal{T}} \bm{C}_{22}^{-1} \bm{C}_{21}$

$$\frac{\left(\Delta \mathbf{a}\right)}{\delta \boldsymbol{\tau}} = -\left(\frac{\mathbf{S}^{-1}}{-\mathbf{C}_{22}^{-1}\mathbf{C}_{21}\mathbf{S}^{-1}} \left| \begin{array}{c} -\mathbf{S}^{-1}\mathbf{C}_{21}^{T}\mathbf{C}_{22}^{-1} \\ \mathbf{C}_{22}^{-1}-\mathbf{C}_{22}^{-1}\mathbf{C}_{21}\mathbf{C}_{21}^{T}\mathbf{S}^{-1}\mathbf{C}_{22}^{-1} \end{array}\right) \left(\frac{\mathbf{b}}{\boldsymbol{\beta}}\right)$$
(1)

- Top part of Eq. 1 are the desired alignment corrections
- Only C₂₂ has to be inverted, inexpensive since block diagonal
- No approximation, all correlations still included

Final set of equations

$$\left(\sum \mathbf{C}_{i} - \sum \mathbf{G}_{i} \mathbf{\Gamma}_{i}^{-1} \mathbf{G}_{i}^{T}\right) \Delta \mathbf{a} = \left(\sum \mathbf{b}_{i} - \sum \mathbf{G}_{i} (\mathbf{\Gamma}_{i}^{-1} \boldsymbol{\beta}_{i})\right)$$

Weak Modes

- weak modes can be estimated from eigenvalue spectrum
- visualisation of current smallest eigenvalue
- would introduce significant bias depending on φ

Possible weak deformation in the current alignment procedure