14TH IMPRS Workshop Max-Planck-Institut für Physik Munich - November 2, 2009

B_s Physics in the Standard Model and in a Scenario with A Single Universal Extra Dimension

MARIA VALENTINA CARLUCCI

Dipartimento di Fisica - Università degli Studi di Bari INFN - Istituto Nazionale di Fisica Nucleare

OUTLINE

- Introduction: motivations for *B_s* phenomenology and extra dimensions
- The ACD Model with a single Universal Extra Dimension
- $B_s \overline{B}_s$ mixing in the SM and in the ACD Model
- Rare B_s decays to $\eta^{(\prime)}$ final states in the SM and in the ACD Model
- Conclusions

1/15

• Completing CKM phenomenology: access to the *bs* Unitarity Triangle

INTRODUCTION B_S PHENOMENOLOGY

• Completing CKM phenomenology: access to the *bs* Unitarity Triangle

• FCNC $b \leftrightarrow s \longrightarrow$ possibility to test New Physics

INTRODUCTION B_S PHENOMENOLOGY

• Completing CKM phenomenology: access to the *bs* Unitarity Triangle

• FCNC $b \leftrightarrow s \longrightarrow$ possibility to test New Physics

• First evidence of New Physics?

UTfit, arXiv:0803.0659v1

FIRST EVIDENCE OF NEW PHYSICS IN $b \leftrightarrow s$ TRANSITIONS (UTfit Collaboration)

CKMfitter, Nucl. Phys. Proc. Suppl. 185 (2008)

Although there is a hint of a departure from the Standard Model related to the measurement of the phase ϕ_s , consistently by the CDF and D0 experiments, we do not see evidence (larger than the 3σ threshold) for New Physics, which has to be contrasted with Ref. [8].

INTRODUCTION WHY EXTRA DIMENSIONS?

- Hierarchy problem Large ED, Warped ED, ...
- Electroweak simmetry breaking without a Higgs boson Orbiforld breaking, Warped ED, Composite Higgs, ...
- Generation of mass and CKM hierarchy, new sources of CP violation Warped ED, ...
- Grand Unifications Superstrings, Supergravity, Warped ED, ...
- New Dark Matter candidates Universal ED, ...
- Black hole production at future colliders as a window on quantum gravity Phys. Rev. Lett. 87 (2001), Phys. Rev. D65 (2002), ...

INTRODUCTION WHY EXTRA DIMENSIONS?

- Hierarchy problem Large ED, Warped ED, ...
- Electroweak simmetry breaking without a Higgs boson Orbiforld breaking, Warped ED, Composite Higgs, ...
- Generation of mass and CKM hierarchy, new sources of CP violation Warped ED, ...
- Grand Unifications Superstrings, Supergravity, Warped ED, ...
- New Dark Matter candidates Universal ED, ...
- Black hole production at future colliders as a window on quantum gravity Phys. Rev. Lett. 87 (2001), Phys. Rev. D65 (2002), ...

Assumptions of the model by Appelquist, Cheng, Dobrescu, in its version with a single UED:

- there is a unique universal extra dimension
- it is compactified in the orbifold S_R^1/Z_2

Appelquist, Cheng, Dobrescu,

Assumptions of the model by Appelquist, Cheng, Dobrescu, in its version with a single UED:

- there is a unique universal extra dimension
- it is compactified in the orbifold S_R^1/Z_2

The form of fields is constrained:

$$\begin{cases} \Phi^+(x,y) = \frac{1}{\sqrt{2\pi R}} \phi^+_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^+_{(n)}(x) \cos(m_n y) \\ \Phi^-(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^-_{(n)}(x) \sin(m_n y) \end{cases}$$

• spinor

scalar

•

$$\psi^{+}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{R(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n \ge 1}^{\infty} \left[\psi_{R(n)}(x) \cos(m_n y) + \psi_{L(n)}(x) \sin(m_n y) \right]$$

$$\psi^{-}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{L(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{n \ge 1} \left[\psi_{L(n)}(x) \cos(m_n y) + \psi_{R(n)}(x) \sin(m_n y) \right]$$

vector

$$\begin{cases} V^{\mu}(x,y) = \frac{1}{\sqrt{2\pi R}} V^{\mu}_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^{\mu}_{(n)}(x) \cos(m_n y) \\ V^5(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^5_{(n)}(x) \sin(m_n y) \end{cases}$$

Assumptions of the model by Appelquist, Cheng, Dobrescu, in its version with a single UED:

- there is a unique universal extra dimension
- it is compactified in the orbifold S_R^1/Z_2

The form of fields is constrained:

$$\begin{cases} \Phi^{+}(x,y) = \frac{1}{\sqrt{2\pi R}} \phi^{+}_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^{+}_{(n)}(x) \cos(m_n y) \\ \Phi^{-}(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^{-}_{(n)}(x) \sin(m_n y) \end{cases}$$

• spinor

scalar

•

$$^{+}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{R(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n \ge 1}^{\infty} \left[\psi_{R(n)}(x) \cos(m_n y) + \psi_{L(n)}(x) \sin(m_n y) \right]$$

$$^{-}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{L(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{n \ge 1} \left[\psi_{L(n)}(x) \cos(m_n y) + \psi_{R(n)}(x) \sin(m_n y) \right]$$

$$V^{\mu}(x,y) = \frac{1}{\sqrt{2\pi R}} V^{\mu}_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^{\mu}_{(n)}(x) \cos(m_n y)$$
$$V^5(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^5_{(n)}(x) \sin(m_n y)$$

Assumptions of the model by Appelquist, Cheng, Dobrescu, in its version with a single UED:

- there is a unique universal extra dimension
- it is compactified in the orbifold S_R^1/Z_2

The form of fields is constrained:

• scalar

$$\Phi^{+}(x,y) = \frac{1}{\sqrt{2\pi R}} \phi^{+}_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^{+}_{(n)}(x) \cos(m_n y)$$
$$\Phi^{-}(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} \phi^{-}_{(n)}(x) \sin(m_n y)$$

• spinor

$${}^{+}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{R(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n \ge 1}^{\infty} \left[\psi_{R(n)}(x) \cos(m_n y) + \psi_{L(n)}(x) \sin(m_n y) \right]$$

$${}^{-}(x,y) = \frac{1}{\sqrt{2\pi R}} \psi_{L(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{n \ge 1} \left[\psi_{L(n)}(x) \cos(m_n y) + \psi_{R(n)}(x) \sin(m_n y) \right]$$

• vector

$$V^{\mu}(x,y) = \frac{1}{\sqrt{2\pi R}} V^{\mu}_{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^{\mu}_{(n)}(x) \cos(m_n y)$$
$$V^{5}(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} V^{5}_{(n)}(x) \sin(m_n y)$$

$$m_n = \frac{n}{R}$$

Appelquist, Cheng, Dobrescu,

4/15

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

 $\begin{aligned} \mathscr{L}_{G} &= \bar{\mathcal{L}}_{\ell} \left(i\Gamma_{A} D^{A} \right) \mathcal{L}_{\ell} + \bar{\mathcal{R}}_{\ell} \left(i\Gamma_{A} D^{A} \right) \mathcal{R}_{\ell} - \frac{1}{4} \operatorname{Tr} \left(W_{MN} W^{MN} \right) - \frac{1}{4} B_{MN} B^{MN} \\ &+ \bar{\mathcal{L}}_{q} \left(i\Gamma_{A} D^{A} \right) \mathcal{L}_{q} + \bar{\mathcal{R}}_{u} \left(i\Gamma_{A} D^{A} \right) \mathcal{R}_{u} + \bar{\mathcal{R}}_{d} \left(i\Gamma_{A} D^{A} \right) \mathcal{R}_{d} \\ \\ \mathscr{L}_{H} &= \left(D_{A} H \right)^{\dagger} \left(D^{A} H \right) - \left[-\mu^{2} H^{\dagger} H + \frac{\tilde{\lambda}}{4!} \left(H^{\dagger} H \right)^{2} \right] \\ \\ \mathscr{L}_{Y} &= -\bar{\mathcal{L}}_{\ell} \tilde{Y}_{\ell} H \mathcal{R}_{\ell} - \bar{\mathcal{L}}_{a} \tilde{Y}_{u} (i\sigma^{2} H^{*}) \mathcal{R}_{u} - \bar{\mathcal{L}}_{a} \tilde{Y}_{d} H \mathcal{R}_{d} + \text{h.c.} \end{aligned}$

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

 $\mathscr{L}_{G} = \bar{\mathcal{L}}_{\ell} \left(i\Gamma_{A}D^{A} \right) \mathcal{L}_{\ell} + \bar{\mathcal{R}}_{\ell} \left(i\Gamma_{A}D^{A} \right) \mathcal{R}_{\ell} - \frac{1}{4} \operatorname{Tr} \left(W_{MN}W^{MN} \right) - \frac{1}{4} B_{MN}B^{MN} + \bar{\mathcal{L}}_{q} \left(i\Gamma_{A}D^{A} \right) \mathcal{L}_{q} + \bar{\mathcal{R}}_{u} \left(i\Gamma_{A}D^{A} \right) \mathcal{R}_{u} + \bar{\mathcal{R}}_{d} \left(i\Gamma_{A}D^{A} \right) \mathcal{R}_{d} - \frac{1}{4} B_{MN}B^{MN} - \left[-\mu^{2}H^{\dagger}H + \frac{\tilde{\lambda}}{4!} \left(H^{\dagger}H \right)^{2} \right]$

 $\mathscr{L}_Y = -\bar{\mathcal{L}}_{\ell} \tilde{Y}_{\ell} H \mathcal{R}_{\ell} - \bar{\mathcal{L}}_q \tilde{Y}_u (i\sigma^2 H^*) \mathcal{R}_u - \bar{\mathcal{L}}_q \tilde{Y}_d H \mathcal{R}_d + \text{h.c.}$

dimensional reduction

$$\mathscr{L}^{4D}_{\mathrm{eff}}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

dimensional reduction

$$\mathscr{L}^{4D}_{\mathrm{eff}}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Results:

• The low energy limit is the SM

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

dimensional reduction 2

$$\mathscr{L}_{\text{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

dimensional reduction

$$\mathscr{L}_{\text{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$
- Feynman rules

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

dimensional reduction

$$\mathscr{L}_{\mathrm{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$
- Feynman rules
- A triplet of new stable particles: good Dark Matter candidates!

 $a^{0(n)} = \frac{im_Z Z_5^{(n)} + m_n \phi^{3(n)}}{\sqrt{m_Z^2 + m_n^2}} \qquad a^{\pm(n)} = \frac{im_W W_5^{\pm(n)} + m_n \phi^{\pm(n)}}{\sqrt{m_W^2 + m_n^2}}$

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$
- Feynman rules
- A triplet of new stable particles: good Dark Matter candidates!

 $a^{0(n)} = \frac{im_Z Z_5^{(n)} + m_n \phi^{3(n)}}{\sqrt{m_Z^2 + m_n^2}} \qquad a^{\pm(n)} = \frac{im_W W_5^{\pm(n)} + m_n \phi^{\pm(n)}}{\sqrt{m_W^2 + m_n^2}}$

dimensional reduction

$$\mathscr{L}_{\text{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Notice:

• Only one new parameter: *R*

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

dimensional reduction

$$\mathscr{L}_{\text{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$
- Feynman rules
- A triplet of new stable particles: good Dark Matter candidates!

 $a^{0(n)} = \frac{im_Z Z_5^{(n)} + m_n \phi^{3(n)}}{\sqrt{m_Z^2 + m_n^2}} \qquad a^{\pm(n)} = \frac{im_W W_5^{\pm(n)} + m_n \phi^{\pm(n)}}{\sqrt{m_W^2 + m_n^2}}$

Notice:

- Only one new parameter: *R*
- KK modes revealable only through loop processes

One can introduce a Standard Model-inspired Lagrangian:

 $\mathscr{L}^{5D} = \mathscr{L}_G + \mathscr{L}_H + \mathscr{L}_Y$

Results:

- The low energy limit is the SM
- Conservation of the "KK parity" $(-1)^n$
- Feynman rules
- A triplet of new stable particles: good Dark Matter candidates!

 $a^{0(n)} = \frac{im_Z Z_5^{(n)} + m_n \phi^{3(n)}}{\sqrt{m_Z^2 + m_n^2}} \qquad a^{\pm(n)} = \frac{im_W W_5^{\pm(n)} + m_n \phi^{\pm(n)}}{\sqrt{m_W^2 + m_n^2}}$

dimensional reduction

$$\mathscr{C}_{\text{eff}}^{4D}(x^{\mu}) = \int_0^{2\pi} dy \, \mathscr{L}^{5D}(x^{\mu}, y)$$

4/15

Notice:

- Only one new parameter: *R*
- KK modes revealable only through loop processes

FCNC $b \leftrightarrow s$: $B_s - \bar{B}_s$ mixing, $B_s \to \eta^{(\prime)}$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

$$\hat{T}_{12} = \frac{G_F^2}{12\pi^2} \left(V_{tb} V_{ts}^* \right)^2 m_{B_s} m_W^2 S_0(x_t) \hat{\eta}_b f_{B_s}^2 B_{B_s}$$
Inami-Lim function
$$\int S_0(x_t) = \frac{4x_t - 11x_t^2 + x_t^3}{4(1 - x_t)^2} - \frac{3x_t^3 \ln x_t}{2(1 - x_t)^3}$$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

Described by a Schrödinger-like equation (justified by the Wigner-Weisskopf approximation):

$$i\frac{d}{dt}\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix} = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\begin{pmatrix}B_s(t)\\\bar{B}_s(t)\end{pmatrix}$$

• $M_{11} = M_{22}$ and $\Gamma_{11} = \Gamma_{12}$ are just the mass and the width of the B_s .

B_s Mixing in the SM and in the ACD Model PARAMETERS IN THE ACD MODEL

Only M_{12} is modified:

B_s Mixing in the SM and in the ACD Model PARAMETERS IN THE ACD MODEL

Only M_{12} is modified:

For each *n* the modified Inami-Lim function is

$$S_{n}(x_{t}, x_{n}) = \frac{1}{4(x_{t} - 1)^{3} x_{t}} \left[6x_{n}x_{t} - 5x_{t}^{2} - 12x_{n}x_{t}^{2} + 15x_{t}^{3} + + 10x_{n}x_{t}^{3} - 11x_{t}^{4} - 4x_{n}x_{t}^{4} + x_{t}^{5} - - 2x_{n}(x_{t} - 1)^{3}(3x_{n} + 3x_{n}x_{t} - x_{t}) \ln \frac{x_{n}}{1 + x_{n}} + + \left(-6x_{n}^{2} + 2x_{n}x_{t} + 12x_{n}^{2}x_{t} - 6x_{n}x_{t}^{2} - 2x_{t}^{3} + + 14x_{n}x_{t}^{3} - 2x_{n}^{2}x_{t}^{3} + 6x_{t}^{4} - 2x_{n}x_{t}^{4} \right) \ln \frac{x_{t} + x_{n}}{1 + x_{n}} \right]$$

Buras *et al.*, Nucl. Phys. **B660**, 225 (2003)

B_s Mixing in the SM and in the ACD Model PARAMETERS IN THE ACD MODEL

Only M_{12} is modified:

For each *n* the modified Inami-Lim function is

$$S_n(x_t, x_n) = \frac{1}{4(x_t - 1)^3 x_t} \left[6x_n x_t - 5x_t^2 - 12x_n x_t^2 + 15x_t^3 + + 10x_n x_t^3 - 11x_t^4 - 4x_n x_t^4 + x_t^5 - - 2x_n (x_t - 1)^3 (3x_n + 3x_n x_t - x_t) \ln \frac{x_n}{1 + x_n} + + \left(-6x_n^2 + 2x_n x_t + 12x_n^2 x_t - 6x_n x_t^2 - 2x_t^3 + + 14x_n x_t^3 - 2x_n^2 x_t^3 + 6x_t^4 - 2x_n x_t^4 \right) \ln \frac{x_t + x_n}{1 + x_n} \right]$$

Buras *et al.*, Nucl. Phys. **B660**, 225 (2003)

The series converges due to the GIM mechanism:

$$\begin{split} S\left(x_{t},R\right) &= S_{0}(x_{t}) + \sum_{n=1}^{\infty} S_{n}\left(x_{t},x_{n}\right) = \\ &= \frac{4x_{t} - 11x_{t}^{2} + x_{t}^{3}}{4(1 - x_{t})^{2}} - \frac{3x_{t}^{3}\ln x_{t}}{2(1 - x_{t})^{3}} + \\ &+ \frac{1}{4(x_{t} - 1)^{3}x_{t}} \left[x_{t}^{3}\left(3x_{t} - 1\right) J_{-1,m_{t}}(R) + \\ &+ \left(-1 + 3x_{t} - 7x_{t}^{2} + x_{t}^{3}\right) J_{0,m_{t}}(R) + \\ &+ \left(-3 + 6x_{t} - x_{t}^{3}\right) J_{1,m_{t}}(R) + x_{t}\left(1 - 3x_{t}\right) J_{-1,m_{W}}(R) + \\ &+ \left(4x_{t}\right) J_{0,m_{W}}(R) + x_{t}\left(-5 + 3x_{t}\right) J_{1,m_{W}}(R) \right] \end{split}$$

B_s Mixing in the SM and in the ACD Model DEVIATIONS FROM THE SM 7/15

Effects on the observable $\Delta m = 2 M_{12}$:

$$\Delta m(R) = 2 \frac{G_F^2}{12\pi^2} \left(V_{tb} V_{ts}^* \right)^2 m_{B_s} m_W^2 S(x_t, R) \,\hat{\eta}_b f_{B_s}^2 B_{B_s}$$

B_s Mixing in the SM and in the ACD Model DEVIATIONS FROM THE SM

Effects on the observable $\Delta m = 2 M_{12}$:

$$\Delta m(R) = 2 \frac{G_F^2}{12\pi^2} \left(V_{tb} V_{ts}^* \right)^2 m_{B_s} m_W^2 S(x_t, R) \,\hat{\eta}_b f_{B_s}^2 B_{B_s}$$

B_s Mixing in the SM and in the ACD Model DEVIATIONS FROM THE SM

Effects on the observable $\Delta m = 2 M_{12}$:

$$\Delta m(R) = 2 \frac{G_F^2}{12\pi^2} \left(V_{tb} V_{ts}^* \right)^2 m_{B_s} m_W^2 S(x_t, R) \,\hat{\eta}_b f_{B_s}^2 B_{B_s}$$

The ACD Model is a Minimal Flavor Violation scenario \longrightarrow the CKM matrix is the same as the SM.

7/15

But the elements of the CKM matrix are extracted from experimental datas:

$$\Delta m^{\text{EXP}} = 2 \frac{G_F^2}{12\pi^2} (V_{tb} V_{ts}^*)^2 m_{B_s} m_W^2 S(x_t, R) \hat{\eta}_b f_{B_s}^2 B_{B_s}$$
$$\downarrow$$
$$V_{ts} \equiv V_{ts}(R) = |V_{ts}(R)| \exp\left[\beta_s(R)\right]$$

 ${\rm B_s}\,{\rm Mixing}\,{\rm in}\,{\rm the}\,{\rm SM}\,{\rm and}\,{\rm in}\,{\rm the}\,{\rm ACD}\,{\rm Model}$ Signatures in $B_s\to\eta^{(\prime)}\,J/\psi$

Naive factorization

 $\langle \eta J/\psi | \left(\bar{s}_L \gamma^{\mu} b_L \right) \left(\bar{c}_L \gamma_{\mu} c_L \right) | B_s \rangle \simeq \langle \eta | \left(\bar{s}_L \gamma^{\mu} b_L \right) | B_s \rangle \left\langle J/\psi | \left(\bar{c}_L \gamma_{\mu} c_L \right) | 0 \right\rangle$

Amplitude not modified in the ACD Model:

$$\Gamma\left(B_s \to \eta^{(\prime)} J/\psi\right) = \frac{G_F^2 |V_{cb} V_{cs}^*|^2}{8\pi m_{B_s}^3} \left(C_1 + \frac{C_2}{N_c}\right)^2 \left|f_{J/\psi}\right|^2 \left(F_1(m_{J/\psi}^2)\right)^2 \lambda^{3/2} \left(m_{B_s}^2, m_\eta^2, m_{J\psi}^2\right)$$

Integrated asymmetry $a_{f} = \frac{\int_{0}^{\infty} dt \left[\Gamma\left(\bar{B}_{s}(t) \to f\right) - \Gamma\left(B_{s}(t) \to f\right)\right]}{\int_{0}^{\infty} dt \left[\Gamma\left(\bar{B}_{s}(t) \to f\right) + \Gamma\left(B_{s}(t) \to f\right)\right]} = \frac{1}{4} \frac{1 + [\Delta\Gamma]^{2}}{1 + [\Delta m(R)]^{2}} \frac{\sin \phi}{1 - \cos \phi}$

RARE B_s decays to η final states EFFECTIVE HAMILTONIAN

$$B_s \to \eta^{(\prime)} \longrightarrow \text{FCNC} \ b \leftrightarrow s$$

Operator **P**roduct **E**xpansion:

$$H_{OPE} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

Wilson coefficients Loca

Local operators

$$O_{1} = (\bar{c}_{L\alpha}\gamma^{\mu}b_{L\beta})(\bar{s}_{L\beta}\gamma_{\mu}c_{L\alpha})$$

$$O_{2} = (\bar{c}_{L\alpha}\gamma^{\mu}b_{L\alpha})(\bar{s}_{L\beta}\gamma_{\mu}c_{L\beta})$$

$$O_{3} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha})\left[(\bar{u}_{L\beta}\gamma_{\mu}u_{L\beta}) + \dots + (\bar{b}_{L\beta}\gamma_{\mu}b_{L\beta})\right]$$

$$O_{4} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\beta})\left[(\bar{u}_{L\beta}\gamma_{\mu}u_{L\alpha}) + \dots + (\bar{b}_{L\beta}\gamma_{\mu}b_{L\alpha})\right]$$

$$O_{5} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha})\left[(\bar{u}_{R\beta}\gamma_{\mu}u_{R\beta}) + \dots + (\bar{b}_{R\beta}\gamma_{\mu}b_{R\beta})\right]$$

$$O_{6} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\beta})\left[(\bar{u}_{R\beta}\gamma_{\mu}u_{R\alpha}) + \dots + (\bar{b}_{R\beta}\gamma_{\mu}b_{R\alpha})\right]$$

$$O_{7} = \frac{e}{16\pi^{2}}m_{b}\left(\bar{s}_{L\alpha}\sigma^{\mu\nu}b_{R\alpha}\right)F_{\mu\nu}$$

$$O_{8} = \frac{g_{s}}{16\pi^{2}}m_{b}\left[\bar{s}_{L\alpha}\sigma^{\mu\nu}(\lambda^{a}/2)_{\alpha\beta}b_{R\beta}\right]G_{\mu\nu}^{a}$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}}\left(\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha}\right)\ell\gamma_{\mu}\bar{\ell}$$

RARE B_s decays to η final states EFFECTIVE HAMILTONIAN

$$B_s \to \eta^{(\prime)} \longrightarrow \text{FCNC} \ b \leftrightarrow s$$

Operator **P**roduct **E**xpansion:

$$H_{OPE} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

Wilson coefficients Loca

Local operators

$$O_{1} = (\bar{c}_{L\alpha}\gamma^{\mu}b_{L\beta})(\bar{s}_{L\beta}\gamma_{\mu}c_{L\alpha})$$

$$O_{2} = (\bar{c}_{L\alpha}\gamma^{\mu}b_{L\alpha})(\bar{s}_{L\beta}\gamma_{\mu}c_{L\beta})$$

$$O_{3} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha})[(\bar{u}_{L\beta}\gamma_{\mu}u_{L\beta}) + \dots + (\bar{b}_{L\beta}\gamma_{\mu}b_{L\beta})]$$

$$O_{4} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\beta})[(\bar{u}_{L\beta}\gamma_{\mu}u_{L\alpha}) + \dots + (\bar{b}_{L\beta}\gamma_{\mu}b_{L\alpha})]$$

$$O_{5} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha})[(\bar{u}_{R\beta}\gamma_{\mu}u_{R\beta}) + \dots + (\bar{b}_{R\beta}\gamma_{\mu}b_{R\beta})$$

$$O_{6} = (\bar{s}_{L\alpha}\gamma^{\mu}b_{L\beta})[(\bar{u}_{R\beta}\gamma_{\mu}u_{R\alpha}) + \dots + (\bar{b}_{R\beta}\gamma_{\mu}b_{R\alpha})$$

$$O_{7} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}_{L\alpha}\sigma^{\mu\nu}b_{R\alpha})F_{\mu\nu}$$

$$O_{8} = \frac{g_{s}}{16\pi^{2}}m_{b}\left[\bar{s}_{L\alpha}\sigma^{\mu\nu}(\lambda^{a}/2)_{\alpha\beta}b_{R\beta}\right]G_{\mu\nu}^{a}$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}}(\bar{s}_{L\alpha}\gamma^{\mu}b_{L\alpha})\ell\gamma_{\mu}\bar{\ell}$$

RARE B_s DECAYS TO η FINAL STATES WILSON COEFFICIENTS IN THE ACD MODEL

10/15

The considered Wilson coefficients are modified in the ACD Model.

RARE B_s decays to η final states WILSON COEFFICIENTS IN THE ACD MODEL

The considered Wilson coefficients are modified in the ACD Model.

Calculations are similar to the previous ones:

$$F(x_t) \to F'(x_t, R) = F(x_t) + \sum_{n=1}^{\infty} F_n(x_t, x_n)$$

Buras et al., Nucl. Phys. B678, 455 (2004)

RARE B_s decays to η final states FORM FACTORS

11/15

Used to parametrize hadronic matrix elements of currents:

$$\begin{aligned} \langle \eta(p_{\eta}) | \, \bar{s}\gamma_{\mu}b \, | B_{s}(p_{B_{s}}) \rangle &= \left[(p_{B_{s}} + p_{\eta})_{\mu} - \frac{m_{B_{s}}^{2} - m_{\eta}^{2}}{q^{2}} q_{\mu} \right] F_{1}^{\eta}(q^{2}) - \left[\frac{m_{B_{s}}^{2} - m_{\eta}^{2}}{q^{2}} q_{\mu} \right] F_{0}^{\eta}(q^{2}) \\ \langle \eta(p_{\eta}) | \, \bar{s}i\sigma_{\mu\nu}q^{\nu}b \, | B_{s}(p_{B_{s}}) \rangle &= \left[(p_{B_{s}} + p_{\eta})_{\mu}q^{2} - \left(m_{B_{s}}^{2} - m_{\eta}^{2}\right)q_{\mu} \right] \frac{F_{T}^{\eta}(q^{2})}{m_{B_{s}} + m_{\eta}} \end{aligned}$$

RARE B_s decays to η final states FORM FACTORS

Used to parametrize hadronic matrix elements of currents:

$$\begin{aligned} \eta(p_{\eta})|\,\bar{s}\gamma_{\mu}b\,|B_{s}(p_{B_{s}})\rangle &= \left[\left(p_{B_{s}} + p_{\eta}\right)_{\mu} - \frac{m_{B_{s}}^{2} - m_{\eta}^{2}}{q^{2}}q_{\mu} \right] F_{1}^{\eta}(q^{2}) - \left[\frac{m_{B_{s}}^{2} - m_{\eta}^{2}}{q^{2}}q_{\mu} \right] F_{0}^{\eta}(q^{2}) \\ &\langle \eta(p_{\eta})|\,\bar{s}i\sigma_{\mu\nu}q^{\nu}b\,|B_{s}(p_{B_{s}})\rangle = \left[\left(p_{B_{s}} + p_{\eta}\right)_{\mu}q^{2} - \left(m_{B_{s}}^{2} - m_{\eta}^{2}\right)q_{\mu} \right] \frac{F_{T}^{\eta}(q^{2})}{m_{B_{s}} + m_{\eta}} \end{aligned}$$

- Set I: Three-Point Function QCD Sum Rules
- Set II: Light-Cone Sum Rules
- Set III: Soft-Collinear Effective Theory QCD Sum Rules

Results for the considered transition are not available —> we use

RARE B_s DECAYS TO η FINAL STATES

12/15

$$B_s \to \eta^{(\prime)} e^+ e^- \text{ AND } B_s \to \eta^{(\prime)} \mu^+ \mu^-$$

Neglecting the leptons masses:

$$\frac{d\Gamma}{dq^2} \left(B_s \to \eta \ell^+ \ell^- \right) = \frac{G_F^2 \left| V_{tb} V_{ts}^* \right|^2 \alpha^2}{1536\pi^5 m_{B_s}^3} \left\{ \left| -\frac{2C_7 m_b}{m_{B_s} + m_\eta} F_T(q^2) + C_9 F_1(q^2) \right|^2 + \left| C_{10} F_1(q^2) \right|^2 \right\} \lambda^{3/2} \left(m_{B_s}^2, m_\eta^2, q^2 \right)$$

Rare B_s decays to η final states $B_s \to \eta^{(\prime)} \tau^+ \tau^-$

13/15

 τ masses cannot be neglected:

$$\frac{d\Gamma}{dq^2} \left(B_s \to \eta^{(\prime)} \tau^+ \tau^- \right) = \frac{G_F^2 |V_{tb} V_{ts}^*|^2 \alpha^2}{2^9 \pi^5} \frac{\lambda^{1/2} (m_{B_s}^2, m_{\eta}^2, q^2)}{m_{B_s}^3} \sqrt{1 - \frac{4m_{\tau}^2}{q^2}} \frac{1}{3q^2} p(q^2)$$

$$p(q^2) = 6m_{\tau}^2 (m_{B_s}^2 - m_{\eta}^2)^2 |b(q^2)|^2 + \lambda (m_{B_s}^2, m_{\eta}^2, q^2) \left[(2m_{\tau}^2 + sq^2) |c(q^2)|^2 - (4m_{\tau}^2 - q^2) |a(q^2)|^2 \right]$$

$$p(q^2) = C_{10} F_1(q^2) \qquad b(q^2) = C_{10} F_0(q^2) \qquad c(q^2) = C_9 F_1(q^2) - 2(m_b + m_q^2) C_7 \frac{F_T(q^2)}{m_{B_s} + m_{\eta}}$$

Rare ${\rm B}_{\rm s}$ decays to η final states $B_s \to \eta^{(\prime)} \nu \bar{\nu}$

14/15

It is convenient to consider the missing energy:

$$\frac{d\Gamma}{dx} \left(B_s \to \eta^{(\prime)} \bar{\nu} \nu \right) = \frac{\left(|c_L|^2 + |c_R|^2 \right) \left| F_1(q^2) \right|^2}{16\pi^3 m_{B_s}} \lambda^{3/2} \left(m_{B_s}^2, m_\eta^2, q^2 \right)$$

 $x = \frac{E_{\text{miss}}}{m_{B_s}}$

CONCLUSIONS

15/15

• We have studied *B_s* phenomenology comparing the predictions of the Standard Model with the ones of the ACD Model with a single Universal Extra Dimensions.

CONCLUSIONS

- We have studied *B_s* phenomenology comparing the predictions of the Standard Model with the ones of the ACD Model with a single Universal Extra Dimensions.
- In this model Kaluza-Klein excitations can contribute as virtual particles in loop processes, such as FCNCs.

- We have studied *B_s* phenomenology comparing the predictions of the Standard Model with the ones of the ACD Model with a single Universal Extra Dimensions.
- In this model Kaluza-Klein excitations can contribute as virtual particles in loop processes, such as FCNCs.
- We have seen that the mass difference Δm_s is larger in the ACD Model, and it can be detected through the study of asymmetries in decay channels that are not affected by other effects of the model, such as $B_s \rightarrow \eta^{(\prime)} J/\psi$. Moreover, this can also modify the extraction of the *bs* Unitarity Triangle.

- We have studied *B_s* phenomenology comparing the predictions of the Standard Model with the ones of the ACD Model with a single Universal Extra Dimensions.
- In this model Kaluza-Klein excitations can contribute as virtual particles in loop processes, such as FCNCs.
- We have seen that the mass difference Δm_s is larger in the ACD Model, and it can be detected through the study of asymmetries in decay channels that are not affected by other effects of the model, such as $B_s \rightarrow \eta^{(\prime)} J/\psi$. Moreover, this can also modify the extraction of the *bs* Unitarity Triangle.
- We have found that the larger the compactification radius is, the larger the branching ratios of some rare decays to η and η' final states are predicted to be, but the detection of deviations could be difficult due to the considerable error of non-perturbative form factors.

References

M. V. Carlucci, P. Colangelo and F. De Fazio
 Rare B_s decays to η and η' final states Phys Rev. D 80, 055023 (2009)

References

M. V. Carlucci, P. Colangelo and F. De Fazio
 Rare B_s decays to η and η' final states Phys Rev. D 80, 055023 (2009)

A work about another (very different) model with extra dimensions:

 M. V. Carlucci, F. Giannuzzi, G. Nardulli, M. Pellicoro and S. Stramaglia AdS/QCD quark-antiquark potential, meson spectrum and tetraquarks Eur. Phys. J. C 57, 569-578 (2008)

THANKS