Particle Physics with Accelerators and Natural Sources

09. Precision Experiments with Low-Energy Accelerators

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) 01.07.2019

Dr. Frank Simon Dr. Bela Majorovits

Reminder (again): The Standard Model

- The SM describes our visible Universe by a (reasonably small) set of particles:
 - The particles that make up matter: Spin 1/2 Fermions
 - ... and the force carriers: Spin 1 Vector bosons

Elementary Particles				Elementary Forces		
	1	Generatio	n 3		exchange boson	relative strength
Quarks	u	С	t	Strong	g	1
	d	S	b	elmagn.	γ	1/137
Leptons	v _e	V _µ	ν _τ	Weak	W±, Z ⁰	10 -14
	е	μ	τ	Gravitation	G	10 -40

... plus the Higgs particle as a consequence of the mechanism to generate mass

Underlying theories:

QCD

QED / weak interaction

electroweak unification (GSW)

Overview

- Lecture 5: Detailed discussion of LEP physics Z resonance, WW pairs, ...
- Today: Indirect searches for New Physics at low energies
 - Brief recap: Motivation for BSM physics
 - The anomalous magnetic moment of the muon
 - Electric dipole moments

Motivations for Beyond-the-Standard-Model Physics

Reminder: Open Questions

- The Standard Model fails to explain two key observations from astronomy / cosmology:
 - The existence of dark matter
 - The matter-antimatter asymmetry in the universe
- ... and has a number of other shortcomings:
 - large number of free parameters
 - unclear origin of symmetry breaking mechanism, mass hierarchies
 - ...
- ... and a number of open questions:
 - do the forces unify at high scales?
 - why are there three families?
 - why is the electron charge exactly equal to the proton charge?

The Standard Model can only be an *effective theory*, and there has to be physics beyond the SM

Ideas for Solutions

- No shortness of theoretical ideas which typically come with new particles and / or new force carriers
 Two examples:
 - Supersymmetry (SUSY)
 - provides excellent dark matter candidate
 - fully compatible with unification of forces
 - theory can be computed up to Planck Scale
 - essential ingredient for the realisation of string theory (incl. quantum gravity)
 - But: No hints for SUSY particles so far at LHC, also: very large number of free parameters

Ideas for Solutions

- No shortness of theoretical ideas which typically come with new particles and / or new force carriers
 Two examples:
 - Extra dimensions:
 - solves hierarchy problem by moving Planck scale down into the TeV region
 - inspired by string theory: compactified extra dimensions
 - exciting concept but cannot address many of the open issues, and is very strongly model dependent
 - and: no hints seen...

Detecting New Physics: Direct vs Indirect

 Direct detection of New Physics: Production of a new particle, observation of its decay products

Indirect detection of New Physics:
 Observation of new particles / forces
 by deviations from the expectations
 based on the Standard Model

new particles in loops / higher order processes

The Magnetic Moment of the Muon

The Magnetic Moment of the Muon

• The magnetic moment of a particle is related to its intrinsic spin by the gyromagnetic ratio g_{μ} :

$$\vec{\mu}_{\mu} = g_{\mu} \left(\frac{q}{2m}\right) \vec{S}$$

 For a structureless (=elementary) spin 1/2 particle of mass m and charge q = ±e:

$$g_{\mu}=2$$

 radiative corrections, which couple the muon spin to virtual fields introduce an *anomalous magnetic moment*, defined as:

Precision Calculations of g-2

total uncertainty: ~ 0.00000000100 (1 x 10⁻⁹); translated to a_{μ} : 50 x 10⁻¹¹

Measuring the Magnetic Moment of the Muon I

- The concept: putting polarised anti-muons (μ+) in a storage ring
- Two oscillation frequencies are relevant
 - turning of muon momentum vector given by cyclotron frequency ω_{C}

$$\omega_C = -\frac{QeB}{m\gamma}$$

• precession of spin direction of muon with spin precession frequency $\omega_{\rm S}$

$$\omega_{S} = -g \frac{QeB}{2m} - (1 - \gamma) \frac{QeB}{\gamma m} = -a \frac{QeB}{m}$$

$$\omega_{a} = \omega_{S} - \omega_{C} = -\frac{\left(\frac{g-2}{2}\right) \frac{QeB}{2m}}{\frac{g-2}{2} + \frac{g-2}{2m}} = -a \frac{QeB}{m}$$

$$i = -\frac{Qe}{2m} = -a \frac{QeB}{m}$$

$$i = -\frac{Qe}{2m} = -a \frac{QeB}{m}$$

$$i = -\frac{Qe}{2m} = -a \frac{QeB}{m}$$

Frank Sir

Muon

SS 2019, 09: Precision Experiments with Low-Energy Accelerators

Particle Physics with Accelerators and Natural Sources:

р

Technical Realisation of the Experiment I

 essentially 100% polarisation obtained by selecting highest-energy muons produced from pion decay

Technical Realisation of the Experiment II

	TABLE III: Selected AGS proton beam and secondary pion beamline char									
181	Proton Beam	Value	Pion Beamline	Value						
AGS	Protons per AGS cycle	5×10^{13}	Horizontal emittance	42 π mm-mrad						
NOD -	Cycle repetition rate	$0.37~\mathrm{Hz}$	Vertical emittance	56 $\pi \rm mm\text{-}mrad$						
1900-	Proton momentum	$24~{\rm GeV}/c$	Inflector horizontal aperture	$\pm 9 \mathrm{~mm}$						
U_V line	Bunches per cycle	6 to 12	Inflector vertical aperture	$\pm 28 \text{ mm}$						
VD3	Bunch width (σ)	25 ns	Pions per proton [*]	10^{-5}						
VD4 V IIn	Bunch spacing	$33 \mathrm{\ ms}$	Muons per pion decay ^{**}	0.012						
*Captured by the beamline channel; **Measured at the inflector entrance										
	Beam Stop									
К1-К2		Inflector								
			g -2 Ring							

Technical Realisation of the Experiment III

Key Challenges of the Experiment I

- Particle beam needs to be focused to prevent beam disintegration
 - Normally done with focusing quadrupoles (-> Lecture 2!)
- The problem here: Cannot afford any additional magnetic fields besides the standard (and homogeneous) dipole field of the storage ring: would result in distortions of the spin precession & destroy the effect of g - 2 > 0.
- The solution: Use electrical quadrupole fields for focusing

Key Challenges of the Experiment II

 But: Maxwell's equations tell us that an electric charge moving in an F field will also see an additional B-field - changes impact of anomalous magr moment on oscillation pattern depending on field strength / path of

$$\vec{\omega}_a = -\frac{Qe}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

can be solved by picking a specific momentum (specific γ , β) where the additional term cancels:

"magic momentum" p = 3.09 GeV/c, γ = 29.3

Experiment and Theory - Results from BNL

• Measurement of the BNL g-2 experiment, taking into account corrections from updated measurements of fundamental constants: $a_{\mu} = 116592089 \pm 63 \times 10^{-11}$ (54 ppm)

 $g_{\mu}^{E821} = 2.00233184178 (126)$ $g_{\mu}^{SM} = 2.00233183656 (100)$

 $\Delta g = 521 \text{ x } 10^{-11}$

 $\Delta a_{\mu} = 261 \times 10^{-11}$

almost 3.5 sigma deviation!

What could it mean?

- Additional particles that are not included in the SM calculations would result in changes of the anomalous magnetic moment
 - SUSY candidates:

Sleptons, charginos, neutralinos

- To be able to explain the observed effect, the preferred mass scales of the particles are relatively low - a few 100 GeV
 - Tensions (but not completely inconsistent) with LHC constraints

 Others: dark photons (extra U(1) gauge bosons) as particles of "dark sector" with weak coupling to the SM

 A dark photon with a mass of a few 10 to a few 100 MeV could explain the observed deviation...

can only be resolved with higher precision!

Prospects for Improvements

- To improve experimental uncertainties: Primarily need more statistics = more muons!
- Storage ring moved from BNL to Fermilab, expecting a factor of 20 increase in statistics:

Experimental uncertainties expected to decrease by a factor of 4

Commissioning in 2017, Physics running since 2018

Moving g-2

Ap Ag > 1 t

Moving g-2

Ap. Dg≥±t

Moving g-2

Another Example in brief: Dipole Moments

Electric Dipole Moments

- Electric dipole moments of a quantum system are a violation of T- and P-parity:
- Highly relevant: If CPT is conserved (all QFT, and all our understanding of physics builds on this!), T violation automatically implies CP violation
 - CP violation is needed to create the matterantimatter asymmetry in the universe
- hov L'oole moment

• Experimental access:

Measure Larmor precession of a neutral particle in parallel and anti-parallel magnetic and electric fields:

$$h \vartheta = 2 \mu_3 B \pm 2 J E$$

Particle Physics with Accelerators and Natural Sources: SS 2019, 09: Precision Experiments with Low-Energy Accelerators

precession in B field

Many Ways of studying EDMs...

Lines of attack towards an EDM

One Example: EDM of the Neutron

• A long history of measurements:

Measuring Neutron EDM: Principle

Ramsey interferometry to measure precession frequency

Measuring Neutron EDM: Setup

- Need to capture ultracold neutrons, observe precession in magnetic and electric fields
 - Requires excellent shielding from external magnetic fields, cancellation of systematic uncertainties absolutely critical, monitoring of magnetic field

Electric field: 11 kV/cm

current limit on neutron EDM corresponds to a frequency difference of 160 nHz (for a B-induced precession frequency of 29 Hz)

nEDM experiment at PSI

- New particles / forces can be searched for in precision observables measured at low energy
 - One example: Magnetic and electric moments: Provide sensitivity to a variety of different BSM possibilities
- Challenging experiments: Control of systematics absolutely crucial
 - Precision measurements of frequency differences / shifts in the 10⁻⁹ range
- Measurements of the anomalous magnetic moment of the muon have shown a ~ 3.5 sigma discrepancy with the SM expectation
 - could be a hint for new physics: Low mass SUSY, dark photons, or just a fluctuation

Next Lecture: 08.07., "Neutrinoless Double Beta Decay", B. Majorovits

Lecture Overview

29.04.	Introduction & Recap: Particle Physics & Experiments				
06.05.	Dark Matter axions and ALPs: Where do they come from?				
13.05.	Axions and ALPs detection				
20.05.	Dark Matter WIMPs - origin and searches				
27.05.	Precision Tests of the Standard Model	F. Simon			
03.06.	Neutrinos: Freeze out, cosmological implications, structure formation	B. Majorovits			
	Pentecost				
17.06.	Natural Neutrino Sources: What can we learn from them?	B. Majorovits			
24.06.	Neutrino Oscillations with Manmade Sources	F. Simon			
01.07.	Precision Experiments with Low-Energy Accelerators	F. Simon			
08.07.	Neutrinoless Double Beta Decay	B. Majorovits			
15.07.	Gravitational Waves	F. Simon			
22.07.	Physics with Flavor: Top and Bottom	F. Simon			

