Particle Physics with Accelerators and Natural Sources

12. Physics with Flavor: Top & Bottom

22.07.2019

Dr. Frank Simon Dr. Bela Majorovits

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Flavor in the Standard Model

- Flavor physics: A wide range of topics connected to different particle types ("flavour")
 - There are six flavors of leptons, and six flavors of quarks: A rich part of particle physics!

Historical Perspective - Discovering the 3. Family

- After the discovery of the τ a third quark family was basically obvious (it was already predicted based on the observation of CP violation at a time when only three quarks were known):
 - Renormalizability of the SM requires equal number of lepton and quark families
- The discovery of the b quark in 1977 directly implied the existence of the t quark since no flavor-changing neutral currents were observed (in the SM: Due to cancellations of t and b contributions) (analogous to the GIM mechanism, which predicted the c quark)
- The precise measurement of the cross-section in e⁺e⁻ - Kollisionen above the b threshold gives the charge of the b: -1/3 => The top has to be + 2/3

A Word of Warning

- I am mixing two topics here:
 - The **top quark** typically does not run under "flavor physics" due to its very high mass, the primary interest here is in **electroweak physics**
 - The **bottom quark** is the front runner in **flavor physics** the main subject of study in the context of CP violation and various other studies

Today: Sketching a few topics and questions - no chance to go much in depth

B Quark Physics

Physics with Heavy Quarks

• Mixing in the quark sector: the CKM Matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

specifies the mismatch of quantum states of quarks when they propagate freely (*mass eigenstates*) or interact strongly and when they take part in the weak interaction (*weak eigenstates*)

 Can be parametrized by 3 mixing angles and 1 complex phase (see discussion on neutrino mixing)

$$\begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta'} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta'} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The complex phase generates CP violation

The CKM Matrix

• Alternative parametrization: Wolfenstein parametrization, takes into account observed values of matrix elements:

$$A\lambda^2 = \sin \phi_{23}$$
 and $A\lambda^3(\rho - i\eta) = \sin \phi_{13} e^{-i\delta'}$ $\lambda = \sin \phi_{12} \approx 0.22$.

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
(the Cabbibo angle)

graphical representation of transition probability

Why Study CP Violation with b Quarks?

• The CKM Matrix is *unitary*

$$V^{\dagger}V = \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Graphically represented by Unitarity Triangles in the complex plane

 Special feature for B⁰ mesons (b and u quark bound states): Comparable length of all three sides - large effects from CP violation

The Processes in B Physics

- Main goals of measurements: Measure and overconstrain the parameters of the CKM matrix (fundamental parameters of the SM) -> "non-closure" of unitarity triangles would indicate physics beyond the SM
- Processes dominated by loops are particularly sensitive

The CKM Matrix - The Status

Studying CP Violation with B Mesons

• A complex interplay of mixing and decay of neutral mesons

 General principle: Studying decays to CP Eigenstates comparing particle and antiparticle in the initial state

- CP violation can manifest itself in three ways
 - Direct CP violation in the decay: Difference in amplitude for particle and anti-particle. (1)
 - In particle anti-particle oscillations (2)
 - In the interference of decay and oscillation (3)

One Example for the Interference Case

The "golden" channel in "B Factories"

Ingredients needed for the Measurement

- Interference of oscillation and decay results in a time-dependent asymmetry, where the amplitude provides one parameter in the unitarity triangle, and the frequency is given by the mass difference of the B⁰ mass eigenstates:
 - 330 µeV, corresponds to 0.5 ps⁻¹, a full oscillation takes ~ 12 ps (B⁰ lifetime ~ 1.5 ps)
- Need to measure:
 - Time since creation of B meson
 - B meson flavor at the time of the decay
 - Full reconstruction of decay channle
- This is tough: short times < 1 ps, small branching ratios (~ 10⁻⁴), oscillating flavors

Tricks for the Measurement

• Use quantum mechanically entangled mesons: Flavor of one can be determined by observing flavor of the other

Tricks for the Measurement

 Measuring decay times via distance: Asymmetric energy in collision trades time vs space: 1 ps ~ 300 µm at speed of light

• Flavor tagging of B decaying into CP eigenstate by other B ("tag side"), where a flavor-specific decay is used (charge of lepton gives B flavor)

B - Factories

• Running until 2010

• > 1 fb⁻¹ per day

B - Factories

• Running until 2008

SLAC PEP II / BaBar

- 9.0 GeV e-
- 3.1 GeV e+
- Luminosity 1.2 x 10³⁴ cm⁻²s⁻¹

The Measurement

Now coming on line: Belle II & SuperKEKB

• Increase of Luminosity by up to x 40

Flavor Physics at LHC: LHCb

• A forward spectrometer, exploiting particle boost

Flavor Physics at LHC: LHCb

• A forward spectrometer, exploiting particle boost

A key LHCb Element: Vertex Reconstruction

• The vertex locator VELO

- 42 silicon detector elements inside the beam pipe vacuum to get as close as possible to the interaction point
 - Localisation of B hadron decays with 10 µm precision

At Hadron Colliders: Measurements of Bs

 Larger mass difference: Much faster oscillation

A long list of other measurements

 ... which we cannot cover here, some intriguing observations connected to leptons in the final state, but nothing conclusive so far

A brief history of CP Violation measurement & theory

Top Quark Physics

Why are we so interested in the Top Quark?

- The Top quark has a special role in the Standard Model
 - It is the heaviest particle, and by far the heaviest Fermion
 - Its mass is comparable to the electroweak scale The top quark could be a window to new physics!
 - Its life time is shorter than the hadronization time it does not form bound states

The Questions:

- How are top quarks produced?
- How do they decay?
 both compared to the SM expectation
- What is the mass of the top quark?

The Top Quark in The Standard Model

- Remember lecture 5: Precision measurements of boson gauge boson (and other) properties, together with the assumptions of the Standard Model can provide indirect constraints on unobserved particles
 - These "loop corrections" typically increase with particle mass: Most relevant for top quark loops

$$W \longrightarrow \int_{\overline{b}}^{t} W W Z \longrightarrow \int_{\overline{t}}^{t} W Z \longrightarrow Z$$

In the Standard Model:

$$m_W^2 = \frac{\pi\alpha}{\sqrt{2}G_F} \frac{1}{\sin^2\theta_W(1-\Delta r)}$$

The influence of single top loops:

$$\Delta r^{top} = -\frac{3\sqrt{2}G_F \cot^2\theta_W}{16\pi^2}m_t^2 \quad \text{for} \quad m_t \gg m_b$$

with
$$\frac{m_W^2}{m_Z^2} = 1 - sin^2 \theta_W$$

NB: Corrections quadratic in m_t , there are also Higgs-induced corrections, which depend logarithmically on m_H : Need to know the top well to constrain H

Predicting the Top Quark Mass

 Improvement of electroweak precision measurements led to a constant improvement of the prediction of the top quark mass -> early on it was clear the top is heavy!

→ Discovery of the top quark in 1995 at the Tevatron, 18 years after the b

Top Quark Pair Production

• Two important production mechanisms via the strong interaction

Quark-AntiQuark annihilation:

Gluon-Gluon fusion:

Production of Single Top Quarks

• Production of single top quarks via the weak interaction:

s-channel production via W exchange

t-channel production

associated production of W and t quark

Top Quark Decay

• Decay via the weak interaction:

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

Currently (assuming 3 generations and unitarity):

 $|V_{td}| = 0.00874^{+0.00026}_{-0.00037}$ $|V_{ts}| = 0.00407 \pm 0.0010$ $|V_{tb}| = 0.999133^{+0.000044}_{-0.000043}$

Top quarks decay almost exclusively into a W boson and a b quark

Top Quark: Width / Lifetime

• In the Standard Modell the width of the top is given by:

$$\Gamma_t = |V_{tb}|^2 \frac{G_F \ m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{m_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{m_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right]$$

- For a mass of ~ 170 GeV this gives a width of ~ 1.3 GeV
 - Corresponds to a lifetime of ~ 5 x 10⁻²⁵ s
 - Much shorter than the hadronization time:

$$\tau_{had} = \Lambda_{QCD}^{-1} \approx (0.2 \,\text{GeV})^{-1} \approx 3 \times 10^{-24} \,\text{s}$$

Top quarks do not form bound states, they decay as free quarks (Still there are influences from the strong interaction, for example via the interaction of the t quarks with the proton remnants in hadron collisions (effects increase with energy), interactions of the decay products from the two quarks in pair production, ...)

Top Decays: Classified by Decay of W Bosons

• W decay via the weak interaction:

"Universality" of the weak interaction, maximal parity violation

- couples to left-handed fermions, right-handed anti-fermions, always with the same strength
 - Quarks have a three-fold weight: 3 colors!
 - ► Example W+:

$$W^{+} \rightarrow e^{+}\nu_{e} : \mu^{+}\nu_{\mu} : \tau^{+}\nu_{\tau} : u\bar{d}' : c\bar{s}'$$

1 : 1 : 1 : 3 : 3

• The types of the W decay determine the different top decay signatures

Top Quark Pair Decays - Classification

• Classified according to W decay (since basically 100% t \rightarrow bW)

Top Pair Decay Channels

CS	n+jets	muon+jets	tau+jets	all-hadronic	
ūd	electro				
ч ^і	еτ	μτ	ξī	tau+jets	
_ <mark>,</mark> µ	eμ	jõ.	μτ	muon+jets	
υ	еÒ	eμ	еτ	electron+jets	
Necan	e ⁺	μ^+	τ^+	ud	cs

Detection of Top Events

- Classification of the events based on their characteristic signatures, then a specialized analysis for each decay mode
 - Di-Lepton Events: Two isolated, highly energetic leptons (e, μ) from W decay
 - Lepton + Jets: One isolated lepton (e, μ) from W decay, jets from W decay and from b quarks
 - All-Hadronic: Jets from both Ws, jets from b quark: Tagging crucial - quite difficult at hadron colliders

Reminder: b quark identification

- Relatively long life time of mesons containing b quarks (cτ (B⁰) ~ 460 μm, cτ (B[±]) ~ 490 μm)
- Identification of a displaced secondary vertex in a jet
 - Jet is "tagged" as a b jet

The Challenge: Background

- Top production is only a very small part of the total pp cross section
- High background, in particular for hadronic decays of the W
 - all-hadronic: QCD multi-jet background (very high!)
 - Iepton+jets: W + jets and QCD multijet background (ok)
 - di-lepton: Z + jets and di-boson background (low)

Experimental Detection: Di-Lepton Events

Experimental Detection: Lepton + Jets

- Relatively clean due to the leptonic decay of one W
 - Signature: Isolated lepton, highly energetic jets and missing energy
- missing information from neutrino
- high statistics (BR 30%)
- Background: Mainly
 W + jets

Interest in Top Mass: The Fate of the Universe

- Top mass, together with Higgs mass and strong coupling, provides key information on the stability of the SM vacuum at higher scales
 - Possible validity of the SM up to the Planck scale?
 - Impact on evolution of the early universe (Higgs inflation models, ...) & physics beyond the SM

Leading uncertainty: Top Mass!

Measurement of the Mass: General Issues

 The mass of the top quark is an important parameter of the standard model and as such very interesting

The problem: What is a quark mass? - Here the "standard" definitions of theorists and experimentalists are not the same

For **theory**: The mass has to be relevant for precision calculations

Defining the mass of the top is not trivial - it is influenced by QCD corrections at higher orders

Several definitions exist in theory, depending on the need of the calculations - They can typically be converted with high precision with higher order calculations - Uncertainties on the **100 MeV** level

Measurement of the Mass: General Issues

For experiment:

The standard technique to measure a mass is to reconstruct the "invariant mass" of the decay products

The challenge: The connection between the experimentally measured "kinetic mass" and the theoretical definitions is unclear - non-perturbative corrections from the strong interaction Uncertainties on the **GeV** level - comparable to experimental precision of current experiments, will become critical for future top mass measurements!

Techniques to measure the Top Mass

- Measurement in all final states of top pair events: Di-Lepton, Lepton+Jets, All Hadronic
- Different methods are used (almost) all based on kinematic reconstruction:
 - Template-Method: The measured distribution is compared with simulated distributions using different generator top masses as input
 - Matrix-Element-Method: For each event, a probability distribution of the true top mass is calculated based on the reconstructed final state object, probability based on LO matrix elements
 - Combination with Templates: Ideogram Method
 - ..
- Best accuracy achieved by multi-dimensional fits to reduce systematics
- Most measurements are already limited by systematic uncertainties
 - Important contribution: Jet Energy Scale

Crucial for Mass Measurements: Jet Energy Scale

The measurement of a jet:

- Energy in a cone with a certain radius (various definitions in use) typically in the calorimeters (more sophisticated approaches also use tracks)
- The physics observable:
 - Energy of the original parton
- The energy scale corrects from the measured jet energy to the energy of the parton
- ► Uncertainties from energy calibration, jet structure, ...

CDF

One Example: Lepton + Jets in ATLAS

3D Template fit to extract mass, JES and specific b-Jet energy scale

 $\Delta_{p} \cdot \Delta_{g} \geq \pm t$

Figure 29: The present to the SM prediction f dated using recent me

... and a Wealth of other Results

- Measurements of single top production (directly constraining CKM elements)
- Mass measurements in theoretically well-defined mass definitions via the top pair production cross section (larger uncertainties from PDFs)
- First observation of ttH coupling: Direct access to the top Yukawa coupling

•

Next Semester

• Lecture:

Particle Physics at Colliders and in the High Energy Universe

- New addition: *Journal club* with selected publications on the topics discussed in the lecture
- Announcement to come expected time slot
 Mondays, 15:00 18:00

Lecture Overview

29.04.	Introduction & Recap: Particle Physics & Experiments				
06.05.	Dark Matter axions and ALPs: Where do they come from?				
13.05.	Axions and ALPs detection				
20.05.	Dark Matter WIMPs - origin and searches				
27.05.	Precision Tests of the Standard Model				
03.06.	Neutrinos: Freeze out, cosmological implications, structure formation				
	Pentecost				
17.06.	Natural Neutrino Sources: What can we learn from them?	B. Majorovits			
24.06.	Neutrino Oscillations with Manmade Sources	F. Simon			
01.07.	Precision Experiments with Low-Energy Accelerators	F. Simon			
08.07.	Neutrinoless Double Beta Decay	B. Majorovits			
15.07.	Gravitational Waves	F. Simon			
22.07.	Physics with Flavor: Top and Bottom	F. Simon			

