

SPM Manufacture for Large Area Detection

Pádraig Hughes, SPM Product Manager LIGHT07, Sept. 2007

Motivation

..... Low Light Sensors, Modules and Imaging Arrays.

http://www.SensL.com

LIGHT07

Core Competence

SPM Product

SPM 100/150mm Wafer

SPM 1mm², 9mm² Singulated Die

TOX SPM Packaged

Multiple Configuration Options, see our Website!

SPM Module

- SPMMicro
- SPMMini
- SPMScint

SPM Arrays

LIGHT07

LIGHT07

Large Area Detection

- Advances in solid state sensor technology (SPM) combined smart interconnect/ packaging solutions.
 - Large Area >1" (PMT size)
 - 2D spatial imaging
- Primary Applications
 - Radiation Monitoring
 - Medical Imaging (PET, SPECT)
 - High Energy Particle Detection
 - X Ray Detection
 - Flow Cytrometry
 - Confocal Microscopy
 - Microarray Scanning

6

Medical Imaging

- Improving Imaging performance
 - New Scintillation Materials
 - Improved Detector Performance/System Integration
 - Reliable Detection Modules
- Dual Modality
 - PET/MR

Time-of-Flight PET System (PET/CT 2007)

PET Detection Module

Туре	Trends	Impact	
Improved Scintillators	New Scintillation materials (BGO \rightarrow GSO \rightarrow <u>LYSO (LSO)</u> \rightarrow LaBr ₃	 Improved Timing Accuracy – reduced random event rates Better Energy Resolution 	
	Optimising crystal geometry	Better Spatial resolution	
	Reliability (less brittle e.g. LaBr ₃)	Handling	
Scintillation Detection	Match detector size & response with pixellated scintillator output	Energy resolution (<10%), CRT <500ps	
	Stability & uniform gain across large area	Uptime, less calibration \rightarrow more reliable detection system	
	Improved Detection Formats: e.g. from conventional block detection to Honeycomb detection architectures	 Better identification Less light collection variability No Drop off at side of FOV 	
	Magnetic insensitivity	Dual Modality with MRI	
Electronics	 Less Bulky/Power hungry & Reliable Fast electronics to match intrinsic timing properties of detection module + multichannel readouts (ASIC's) 	High Channel Sampling	

PET Detection Module Format Sense

Typical PMT Format

SPM Equivalent Format

LIGHT07

SPM Packaging for PET

- Scaled SPM array architecture 0.5m² (total area)/PET system
- Submodules equivalent to 1.5" PMT sizes
- 4 side buttable
- electronics integration

Why SPM?

- **> PMT performance**
- Large Area requires High Volume capabilities
- Manufacturability (Solid-State)
 - Scalable, stable, reliable, repeatable
 - Cost \leq PMT cost
- Form Factor (System Integration)
- Dual Modality

SPM Key Properties

- Sensitive to single photons
- Excellent Photon Counting (Resolvable Photoelectron Peaks)
- 1mm² and 9mm² available
- High Intrinsic Gain 10⁶
- High PDE
 - 25-40% Green/Red
 - 40-60% Blue/UV
- Good Dynamic Range/Linearity
- Low Operating Voltage <40V
- Insensitive to Magnetic Fields

Energy Resolution

LSO Pulse height spectra for (clockwise from top left): Am-241(60keV), Co-57 (122keV), Cs-137 (662keV) and Na-22 (511keV and 1274keV).

LIGHT07

SensL Die Manufacturing

Manufacturability is KEY

Tyndall National Institute 100mm **Commercial** the loss that had been been built bad the same too the Foundry 150mm

LIGHT07

Geometrical efficiency

- A35H 60% Fill Factor
- A50H 70%

• PDE = effective QE x Fill Factor

100 mm wafer at metal etch

SPM8 – 3MM SPM A20H 700 DIE PER WAFER X 8640 MICROCELLS = 6 MILLION PHOTON COUNTING DETECTORS

Inkless Wafer Sort to Assembly

Example Breakdown Uniformities

Tight distributions, across wafer, wafer to wafer, run to run Breakdown voltage **independent of diode structure, size**

LIGHT07

Parametric Testing

EXAMPLE - SPM6 PRODUCT TEST REPORTING - DARK COUNT PARAMETERS

SPC Detectors 20U, 50U, 100U, multiple layout types

- 4 V O/V

-wafer level test at room temperature
- measure several bias points to characterise voltage and temperature dependence of dark count
- allows die selection based on dark count performance

LIGHT07

Π

m %

100U detector binning DC4V – RT

Detector: 100 U 8x8

A35H SPM Parameteric testing

PARAMETER	DEFINITION	LOWER SCREEN LIMIT	UPPER SCREEN LIMIT
VBR	BREAKDOWN VOLTAGE – REVERSE BIAS VOLTAGE AT WHICH 10nA FLOWS	27.5 V	27.9 V
IR30	DARK CURRENT, MEASURED AT 30V REVERSE BIAS	5.0E-7 A	5.0E-5 A
IR32	DARK CURRENT, MEASURED AT 32V REVERSE BIAS	5.0E-6 A	1.0E-2 A*

*Tighter screen limit of 6.0E-5A is used for A35HD device on wafer X3615-9

Parametric Testing

150mm wafer (Foundry)

070425-21906-5_003-VBR - WaferMap

Dark Count RoadMap

NonP process

P on N Process

- Breakdown voltage distribution
- Dark count pulse (35U detector, 2V O/V)
- Dark count vs area scaling, wafer medians for circular test structures

Large Area SPM

- PMT area equivalents >0.5"
- 3 Array Approaches Pursued
 - Flex Arrays
 - Glass Arrays
 - Ceramic Arrays
- Pixellated/Summed Ouputs
- Buttable Submodules (Pixellated) PET
- Coupling Efficiency Ideally butt coupled

Flex Arrays

Detector Interconnection Detection Facet with metal tracks & bondpad sites Individual SPM detectors Emission Facet **Detector Array** (tiled NxN – example N =4) Source **Block**

Transparent or perforated thin film sheet (polyimide flex) with metal tracks (tracks not shown) sandwiched between source & detector.

British Patent Application No. 0621495.1, October 2006.

Flex Arrays

SPMArray

- NxN SPM individually addressed
- Spatial detection

Flex Benefits

- Low cost/Lightweight
- Scalable
- Simplified electrical interconnections
- Small Form Factor

SPMPlus

- NxN array summed output
- Large Area detection

Applications

Figure 2 British Patent Application No. 0621495.1

Package Concepts

Glass Arrays

• SPM flip-chip on glass

4x4 SPM Pixellated Ouput

4x4 SPM Summed Ouput

Glass Manufacture

Shipping prototypes to customers

Ceramics Arrays

- In Assembly due Nov. '07
- 4 side buttable solution SensL's PET solution

Specification	Value	
SPM submodule size	Variable from 0.5" to 1.5" (present)	
Pixel to pixel spacing within submodule	<200µm (target 100µm)	
N x N Submodule Fill Factor	Тур. 46.6%	
Submodule to submodule spacing	Minimum 1mm	
Submodule Substrate	Ceramic with BGA	
Optical Encapsulant	OPTOCAST, DYMAX and EPOTEK	

Summary

- SensL has developed novel SPM technology for Large Area Detection
- Ability to manufacture in High Volumes critical
- Medical Imaging
 - RoadMap: Higher sensitivity/spatial resolution
 - SPM form factor an ideal technology solution
- Products:
 - SPMPlus & SPMArray
 - Flexible architectures & High Volume capabilities

The first Solid State solution for Low Light Sensing

SensL's vision is to become the brand and partner of choice for users (particularly OEMs) of low light detectors and imaging systems. We will enable our customers to radically improve system performance by providing a unique and disruptive technology that frees them from the limitations of existing Photomultiplier Tube (PMT) based detectors, thereby creating a range of new applications.

This breakthrough in low light detection solutions has been achieved by leveraging our core Geiger Mode Photodiode technology to create three distinct low light detector platforms. Our Photon Counting, Silicon Photomultiplier and Low Light Imager products enable the development of new systems for applications such as Bio-diagnostics, Medical Imaging, LIDAR, Environmental Monitoring and High Energy Physics.

Thank You phughes@sensl.com

LIGHT07

News

- SensL Launches Innovative New Product: the SPMScint SensL is pleased to announce the release of SPMScint, designed for use with scintillators in radiation detection applications.
- SensL Opens U.S. Office To better serve our U.S. customers we are pleased to announce the opening of our U.S. office in Mountain View, California.

SensL Named One of 30 Hot Companies by SVASE SensL announces their nomination as one of The 30 Hot Companies Selected For Product Debut Demos at "Launch: Silicon Valley" by the Silicon Valley Association of Startup Entrepreneurs (SVASE).

Careers in SensL Are you interested in working at

19-20 January 2008 San Jose, CA, USA

SPIE Photonics West 2008 22-24 January 2008 San Jose, CA, USA Space #6345

Thank You phughes@sensl.com