

Application of Multi Pixel Photon Counters (MPPC) to PET

- Nicola D'Ascenzo DESY Hamburg
- Alexander Tadday
 Kirchhoff-Institut für Physik Universität Heidelberg

Light 07 workshop 23-28.09.07 Ringberg Castle, Tegernsee

Outline

- Introduction to Positron Emission Tomography (PET)
- Why use Multi Pixel Photon Counters (MPPC)?
- Background reduction
- Setup

• Results

Introduction to PET

Why use MPPC's

- Scintillation light from LSO is blue
 - MPPC has high sensitivity in the blue range

Source: Hamamatsu

Why use MPPC's

Spatial Resolution

Small size
 possibility to study single crystal readout with size from I×I-3×3mm²

 Fusion of PET and MRI (small PET detector contained in MRI)

- Not sensitive to magnetic fields
- High gain, low operation voltage

Reduction of Background

Energy Resolution

Why is energy resolution crucial for PET?
Cut scattered events but keep true events
meed good energy resolution

Timing Resolution

Keep coincidence window as small as possible to reduce Random coincidences
need good timing resolution

Time of Flight PET

• Accuracy of position measurement is: (for $\Delta t = 500 \text{ ps}$)

$$\Delta x = \frac{c}{2}\Delta t = 7.5cm$$

No gain in spatial resolution but noise variance decreases

$$f = \frac{D}{\Delta x} = \frac{2D}{c\Delta t}$$

D: Size of emission source

Advantages of Improved timing accuracy in PET Cameras using LSO Scintillator, W.W. Moses LBNL-51788

Scintillating crystal

Used Scintillators

Crystal	Size	Peak emission	Decay time
LSO (Lutetium Orthosilicate), Hilger Crystals	× × 5mm ³ 3×3×15mm ³	420nm	40ns
LFS (Lutetium Fine Silicate), Lebedev Institute	3×3×15mm ³	blue	similar to LSO

Readout with MPPC's from Hamamatsu

Pixels	Active area	Operating voltage	Dark rate 0.5 pixels	Dark rate I.5 pixels	Gain 10 ⁵
400	l×lmm ²	76V	220k - 250kHz	9k - 10kHz	7.4 - 7.5
3600	3×3mm ²	70V	3.2 - 3.3 MHz	320k - 330kHz	7.4 - 7.5

Results: Energy Resolution

I×I×I5mm³ LSO with I×Imm² MPPC

3×3×15mm³ LSO & LFS with 3×3mm² MPPC's

LSO and LFS are equal within systematics $\sim 3\%$ Typical value with "traditional" Photomultiplier tube (511key₅) : 10%

Timing Measurement

Setup

No Preamplifiers needed! Direct evaluation with oscilloscope

Oscilloscope

Oscilloscope: Tektronix Model 7204, Bandwidth 4GHz, 20GS/s ⇒Time

resolution 50ps

Timing Measurement

I. Define coincidence threshold
 N_{pe}
 2. Define timing threshold N_{cut}

 $S_1 > N_{pe} \wedge S_2 > N_{pe}$ $\Delta t = t_1(N_{cut}) - t_2(N_{cut})$

Timing Measurement

"Background event"

"Photoelectric event"

A Background is superimposed and ruins the timing Need to go to high coincidence threshold

Results Timing

Conclusion & Outlook

- MPPC's show very promising properties for the application of Geiger Mode Avalanche Photodiodes in PET
 - Energy Resolution: 10% (fwhm)
 - Timing Resolution: 580ps (fwhm)
- More studies needed
 - Which Crystal LSO, LFS
 - spatial resolution of matrix
 - Build a prototype and verify the concept

End of Presentation Thank you for your attention!