Backside Illuminated Drift Silicon Photomultiplier BID-SiPM

Jelena Ninkovic

on behalf of the **BID-SiPM** group*

*MPI for Physics: J. Ninković, C. Merck, R. Mirzoyan, R. Richter, H.G. Moser, A. Otte, M. Teshima, G. Valceanu *PNSensor: R. Eckhart, G. Lutz, R. Hartmann, P. Holl, C. Koitsch and H. Soltau.

Outline

Motivation

- Concept of the BID-SiPM
- First measurements of the test structures
- Future plans

Gamma Ray Astronomy

SiPM

Conventional SiPM - an array of avalanche photo diodes operated in Geiger mode

BID-SiPM

Conventional SiPM - an array of avalanche photo diodes operated in Geiger mode

BID SiPM – combined principle of avalanche photodiode and drift diode

BID-SiPM

Zoom to a single cell

G. Lutz et al., IEEE Trans.Nuc. Sci., 52, (2005) 1156-1159.

G. Lutz et al., Proc.Int. Con. New Dev. Photodet., Beaune 2005, to be published in NIM A.

Pro & Con

Advantages:

- Unstructured thin entrance window
- 100% fill factor
- High conversion efficiency (especially at short wavelength)
- Lateral drift field focuses electrons into high field region
- High Geiger efficiency (always electrons trigger breakdown)
- Small diode capacitance (short recovery, reduced x-talk)

BID-SiPM radiation entrance window

Non-structured backside allows engineering of the radiation entrance window

Geiger Efficiency of electrons and holes

Electrons have a higher probability to trigger an avalanche breakdown then holes

Efficiency depends on depth of photon conversion and hence on the wavelength

Solutions: -Increase overvoltage

Or:

- Ensure that only electrons trigger an avalanche

Avalanche Efficiency (1 μ m high field region)

Sensitivity at different wavelengths

Example: p-substrate

Pro & Con

Advantages:

- Unstructured thin entrance window
- 100% fill factor
- High conversion efficiency (especially at short wavelength)
- Lateral drift field focuses electrons into high field region
- High Geiger efficiency (always electrons trigger breakdown)
- Small diode capacitance (short recovery, reduced x-talk)

Disadvantages:

- Large volume for thermal generated currents (\rightarrow increased dark rate)
 - Maintain low leakage currents
 - Cooling
 - Thinning (< 50 μm instead of 450 μm)
- Large volume for internal photon conversion (\rightarrow increases x-talk)
 - Lower gain (small diode capacitance helps)
 - Thinning (< 50 μ m instead of 450 μ m)

Possible show stopper!

- Electron drift increases time jitter
 - Small pixels,
 - Increased mobility at low temperature <2 ns possible

•

Design of Devices

Hexagonal Cells

100-200 μm diameter 3 drift rings

Central HF region with 8 μm diameter

Capacitance ~ 12 fF Gain: O(10⁵) ~ 1 μm depth

95% Geiger efficiency @ 8V overvoltage (electrons)

Drift field extends into bulk

Test structure production in 2005/06

-> fix parameters of avalanche cell (radius, depth, resistor values...) -> no backside illumination yet

Single pixel structures Small arrays Large arrays (20 x 25 pixel 180 μm pitch) HF diameter: 5-25 μm

Successfully tested

Breakdown voltage were expected from simulations

Homogeneity

Stress conditioning

Separation of centre and edge currents

Measurement of many diodes with same area but different circumference allows separation of the bulk leakage current I@0mm → Ibulk

Constant area: 1mm² Different circumferences: 4mm (6x) 5mm (3x) 8.5mm (3x) 16.25mm (2x)

Results: Test Structures

Results with light pulses from a laser (< 1 ns): Photoelectron peaks clearly resolved up to large n(photon) RMS of single photoelectron signal ~ 5%

Results: Test Structures

Gain proportional to overvoltage Breakdown voltage in good agreement with device simulations

Dark rate mainly from highly doped HF region: For a 5 x 5 mm² matrix with 500 pixels: ~0.2 MHz @ 20°C (8V)

Leakage Currents and Dark Rates

For devices thinned to 50 μ m: Cooling needed:

~10MHz @ 20°C ~ 1 MHz @ 0°C

Cross Talk Studies

Dark spectrum of 25 μ m arrays

x-talk heavily suppressed due to small HF region and large pitch

Background due to pile up (suppressed by cooling to -20 C)

2pe signal clearly visible:

Probability for x-talk ~ 10^{-4} (@*V Δ U)

For backside illumination:

Bulk is sensitive to cross-talk photons

Use MC to extrapolated to full structure

Results

Gain

Processing of thin detectors (50 μ m)

a) oxidation and back side implant of top wafer

c) process → passivation

Successfully tested with MOS diodes (keep low leakage current ~ 100 pA/cm²)

Next steps ...

production of fully functional backside illuminated drift SiPMs:

- -> including drift rings
- -> double sided processing, deplete bulk

Finished: End 2007

Various test structures (single pixels, small arrays)

Arrays: 30 x 31 pixel Diameter HF region: < 8 μ m Pitch: 100, 120, 150, 200 μ m Area: 3x3 mm² – 6x6 mm²

In addition: some front illuminated arrays

Thanks

Jelena Ninkovic