# On the emission of photons during avalanches

#### A. Nepomuk Otte

Max-Planck-Institut für Physik, München Humboldt Universität, Berlin



light emission during Geiger breakdown (Sciacca, 2003)

# Light Emission in Avalanches



W. J. Kindt

• measured spectra quite different

### Proposed Light Emission Mechanisms

Discussed are:

- recombination (d-r, i-r)
- bremsstrahlung (i-t)
- intraband transitions (i-t, i-r)

It is not clear, what the dominating process is!



W. J. Kindt

### Light Emission → Optical Crosstalk: an unwanted effect in G-APDs



problem in applications optical crosstalk probability distribution

4

# Objectives of this Study



- photons of what energy cause optical crosstalk?
- what is the intensity of photons  $(N_{phot}/N_{e-h pair})$  emitted during an avalanche ?



#### idea: use optical crosstalk to learn about the light emission in avalanches

# Procedure

1. Measure the probability distribution of optical crosstalk



2. Perform a MC-simulation of the SiPM

 $\frac{10^{5}}{2} \frac{10^{6}}{10^{7}} \frac{10^{6}}{4} \frac{10^{7}}{4} \frac{10^{7}}{4} \frac{10^{7}}{10^{7}} \frac{10^{7}}{4} \frac{10^{7}}{10^{7}} \frac{10^{7}}{4} \frac{10^{7}}{10^{7}} \frac{1$ 

and try to reproduce the measured optical crosstalk distribution

# SiSi: The SiPM Simulator



\*Elisabeth "Sis(s)i" von Wittelsbach was the empress consort of Emperor Franz Joseph of Austria. She was born 1837 in Munich, Bavaria and murdered 1898 in Geneva, Switzerland

# SiPM-Simulator

full geometrical description of a SiPM:

- number of cells
- active volume

• ...

simulation of avalanche photons:

- black body radiation with free parameters:
  - temperature
  - intensity
- isotropic emission

photoelectrons in non-depleted bulk are subject to simple diffusion model; lifetime of electrons is free parameter



- non-depleted volume, electrons will diffuse
- avalanche region
- propagation path of photon
  - propagation path of photoelectron

# **Tuning of Model Parameters**

SiSi has three free parameters

- temperature of photon spectrum
- intensity of photon spectrum / probability that avalanche carrier emits photon
- lifetime of electrons in non-depleted bulk

#### Model parameters tuned by reproducing measured optical-crosstalk behavior of a SiPM with SiSi.



SiPM by MEPhI/Pulsar ×10<sup>2</sup> counts number of fired cells

optical crosstalk (dark noise) spectrum (measured)

#### Simulation:

- Temperature 4500K
- Efficiency >1.015eV: 1.45x10<sup>-4</sup> photons/electron
- electron lifetime 60 nsec



goodness of match quantified with a  $\chi^2$ -test

Residuals can be explained by dark counts which are not simulated in SiSi 11

#### $\chi^{\scriptscriptstyle 2}$ -distribution of a scan in:

- temperature of photon spectrum
- intensity of photon spectrum



no unique solution of model parameters but

log scale

# Characteristics of Photons responsible for Optical Crosstalk





simulated photon spectrum



explains narrow photon energy distribution

# Optical Crosstalk in Back Side illuminated SiPM



### Crosstalk Probability in Back Side illuminated SiPM



# **Repeated Study**

done by Hans-Günther Moser

- SiPM produced by HLL: 170µm/200µm pitch and small active areas ~10µm → much lower Crosstalk probability
- Different MC code
- → Different systematics

Extrapolation to back side illuminated SiPM

Crosstalk probability: 20%-30% at gain of 10<sup>5</sup>

i.e. 3-4 times lower

Extrapolation is difficult because photon spectrum becomes important **Needs clarification**:

Have to wait for first prototypes of back side illuminated SiPMs



# Conclusions

- SiSi is a nice tool to understand SiPM
- crosstalk behavior well described after tuning three free parameters in SiSi
- only photons within a narrow energy interval (1.15eV-1.40eV) give rise to optical crosstalk; reason: strong energy dependence of absorption lengths
- measured intensity of photons within 1.15eV-1.40eV : ~3•10<sup>-5</sup> photons / avalanche electron-hole pair; estimated factor of uncertainty: 2
- optical crosstalk is a serious problem for back side illuminated SiPM, however two different studies come to different conclusions
  → have to wait for first prototypes

### Two Examples of Crosstalk Events





# **Electron Lifetimes**



4500K

2000K

Intensity of the photons is reduced by ~30% if lifetime of the electrons in the non-depleted volume is non zero