Light-2007 Workshop, Munich, Sept 2007

Status of SiPM Developments

Boris Dolgoshein (boris@mail.cern.ch) Moscow Engineering and Physics Institute

On behalf of MEPhI-MPI for Physics-Pulsar Collaboration(MMP) O

LIHGT-06, Israel

SiPM today:

High gain, good S/N ratio Good single electron resolution Very good timing Small recovery time Very low nuclear counting effect Insensitivity to B Simple calibration and monitoring Vow bias voltage Low power consumption Compactness Room temperature operation Good T and V stability Not damaged even by ambient light Relatively low expected cost(low resistivity Si, simple technology)

Not very high PDE

Small area

High dark rate(~ area)

Excess Noise Factor is Large enough due to Optical Xtalk

Afterpulses

Optical crosstalk OC

One phe gives rise more than one pixel fired due to secondary photons ~ 3x 10*5 photons(~1000nm) per one electron in Geiger discharge

ОС

- -- does not depend on temperature
- -- proportional to Gain x Photon Detection Efficiency
- The larger PDE → the larger pixel size → The larger Gain

Afterpulsing AP

Capture of avalanche electron by traps and its delayed release giving the secondary Geiger discharge in the same pixel

AP

- -- proportional to Gain × PDE
- -- increases for low temperature the same recovery time because trap lifetime increase

Optical Crosstalk and Afterpulsing

- → Give rise the non-Poisson statistics of fired pixels (SiPM response).
- \rightarrow As a result:
- → SiPM pulse hight resolution is worsening: →(sigma/A)*2 > 1/N phe Excess Noise Factor ENF >1 →Sci Spectrometry(PET etc.)?
 - ENF: for PMT ~ 1.2 for APD ~ 2-2.5 for SiPM(desirable) < 1.05

Optical Crosstalk and Afterpulsing

→ Long tail in SiPM pulse hight distribution vs threshold

B.Dolgoshein,LIGHT06

B.Dolgoshein, SiPM review

The suppression of SiPM noise for as low threshold as possible is extreemly important for:

→Imaging Atmospheric Cherenkov Telescopes(e.g.MAGIC) or space-born fluorescent telescope EUSO

 \rightarrow threshold ~ 1-2 phe

SiPM for astroparticle Physics > A single photon counting

MAGIC Major Atmospheric Gamma Imaging Cherenkov Telescope

G.Lutz, Conf.on Photodetection, Beaune, June 19-24, 2005

Observation of Cherenkov light from ground based telescope

http://hegral.mppmu.mpg.de/MAGICWeb/

B.Dolgoshein,SiPM review

33

B.Dolgoshein, SiPM review

5

Another example of low SiPM requirements:

 \rightarrow Scintillation Calorimetry- for instance a SciTile Imagine Hadron Calorimeter for ILC (CALICE Collaboration), sci tile size: a few cm \rightarrow Typical threshold is ~ 5-7 phe

SiPM tile fibre system

- SiPM developed by MEPhI/PUSAR •
 - Gain ~10⁶, bias ~ 50 V, size 1 mm², 1156 pixels
 - Eff (green) ~ 15%, guenching R ~ 1 10 $M\Omega$
- SiPM tile fibre system integration: ITEP
 - 3x3x0.5 cm³ tiles from UNIPLAST, Russia
 - WLS fibre Kuraray Y11(300) 1mm
 - Matted edges, 2% light xtalk per edge
 - Faces covered with EM mirror foil

MGPDs for calorimetry

Felix Sefkow PD'07 June 27 2007 13

A big 8000 channel HCAL prototype with tail catcher is constructed by CALICE (DESY,ITEP,LAL,MEPHI,NIU,Prague,UK) for analogue and semidigital modes

SiPM&FE signals in calibration mode

LAL 18 ch. SiPM FE chip

B.Dolgoshein, SiPM review

0.5 cm thick tiles

20

One plane with SiPMs and WLS fibers installed into 3x3, 6x6 and 12x12 cm²

CERN test beam, 2006

B.Dolgoshein, SiPM review

Test beam installation at CERN SPS

July - Nov. 2006 CALICE detectors installed in the H6b experimental hall at the CERN SPS

smooth commissioning, prepared at DESY

Hadron (electron) beam 6 - 100 (50) GeV

11

Afterpulsing AP

→ The lifetimes of trapped electron are mostly rather small: less than ~100 ns

Optical Crosstalk OC

OC has two components

FIRST:phe's are induced in high electric field depletion region of neibouring pixels

→this mechanism is very fast: ~1ns(prompt OC)

SECOND : The same in undepleted region and then the diffusion (or

drift)to high electric field Geiger region of neibouring pixels

 \rightarrow this process is delayed: later than 1ns

Optical Crosstalk studies

Results of Optical Crosstalk studies two separated pixels pixel size 100mkm,pitch 130mkm gain 2 x 10*7 recovery time > 1mks PDE=35%

OPTICAL CROSSTALK:

- \rightarrow prompt (< ~1ns.phe in depletion region) ~50%
- \rightarrow delayed(> ~1ns

~50%

OPTICAL CROSSTALK

- SUPPRESSION FACTOR:
 - \rightarrow with optical barriers(tranches,8mkm deep) ~9
 - → with optical barriers + second n-p junction ~4.5
 Total: ~40

Production and performance of 5x5mm2 SiPM for MAGIC telescope with suppression of OC and AP

MAGIC requirements discussed:

 \rightarrow one cell of photodetector plane 2 cm2 with a photosensor 1 cm2 matrix of 4(5x5mm2) SiPMs \rightarrow spectral response ~350-650 nm \rightarrow PDE: as much as possible(compared to PMT) <1-2% \rightarrow Afterpulsing \rightarrow Optical Crosstalk <5% \rightarrow single phe pulse width $\sim 2ns$ \rightarrow dark rate: less than Light Of Night Sky(LONS) =~600 kHz/mm2 → ~300 KHz/mm2 or ~8 MHz/5x5mm2

First step: SiPM 1.4x1.4 mm2 with OC suppression topology

Second step: 5x5mm2 SiPM with OC and AP suppression

SiPM parameters:

→ size	5x5mm2
double junction structure with optical barriers 6mkm	
number of pixels	1600
→ pixel size	100mkm
→ gain	2×10*7
geometrical eff.(filling factor)	64%
pixel capacitance	~1pF
output SiPM capacitance	~160pF
antireflection entrance window	
single pixel recovery time	~ .5mks

Figure 3: $25(5 \times 5)mm^2$ SiPM. It consists of the array of $1600(40 \times 40)$ micropixels with $100 \times 100 \mu m^2$ size.

OC and AP suppression for 5x5mm2 SiPM Comparison with other producers devices -extracted from measurements made by Yu.Musienko,PD07,Kobe,2007

→ Let's define the Optical Crosstalk as

OC = N(threshold > .5 phe) / N(threshold > 1.5 phe)

B.Dolgoshein,SiPM review

Comparison the N on P structure(5x5mm2) with P on N structure(HPK-50)

Y. Musienko

B.Dolgoshein, SiPM review

Timing by 5x5mm2 SiPM: signal shape

- → Because high SiPM output capacitance (~160pF)
 - a special FE electronics has been developed:
 - low imput impedance(a few Ohm) current amplifier+shaper

~ 7 Ohm +shaper FWHM 2,5ns

Timing by 5x5mm2 SiPM: a single phe resolution

Fig.'s below show the impact of SiPM size(size of one pixel and SiPM itself)on single phe resolution FWHM for SiPMs 1x1mm2(pixel size 25mkm) and 5x5mm2(pixel size 100mkm)

Dark Rate vs temperature \rightarrow acceptable temperature

B.Dolgoshein, SiPM review

5x5 mm2 SiPM with OC suppression: performance at room temperature
 → SiPM directly coupled with 5x5 mm2 plastic scintillator rod + Sr90 beta-sourse

SiPM 5x5 mm #b83

B.Dolgoshein, SiPM review

CONCLUSIONS

- 5x5mm2 SiPM with supperssion of (OC + AP)down to 2-3% has been developed, produced and tested
- → Excess Noise Factor measured is quite low (~2%)
- ➔ Special FE electronics for fast timing has been developed and tested
 - →significant improvement of trigger conditions for Imaging Cherenkov and fluorescent Telescopes and Sci systems
- Such a SiPM met the main requirements for MAGIC telescope except:

PDE should be improved especially for UV →increase of filling factor,more thin entrance window Dark rate still too large,cooling system is needed → transition from N on P to P on N structure like MPPC