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QOutline

o SiPMs by FBK-irst (previously ITC-irst)
* Results:
— Characterization
— Evaluation for PET applications
* Application to medical imaging: small animal PET and PET/MR.
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DASIPM collaboration

e SiPMs development at FBK-irst (Center for Scientific and
Technological Research, Trento, Italy) within the DASIPM
collaboration.

e DASIPM: Development and Application of Silicon Photomultipliers.
Universities/INFN sections of Bari, Bologna, Perugia, Pisa, Trento + FBK-irst.
— SiPM development
— Electronics development (Dedicated ASIC + readout system)
— Application to:
 Space physics (AMS TOF)
* Fiber tracking
* Medical imaging: Small animal PET.
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SiPM development at FBK-irst

* Development process since beginning of 2005.

e Aimed at:
— Fabrication and optimization of blue sensitive devices.
— Fabrication of SiPM matrices in common substrate.
* Perfect understanding of the devices and expected results.
* Development process in several steps:
— Simulation
— Test functionality
— Test reproducibility
— Reduction of optical cross-talk
— Reduction of dark noise with gettering techniques.
— Optimization of the fill factor ~—» New SiPMs to be tested.
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SIPMs produced

BI | Single SiPMs: 1 mmx 1 mm

Tavl ne

area in 1.5 mm x 1.5 mm pitch.

Test matrices 2x2 elements

In common substrate .
same characteristics

 Structure: n*-p-Tep*optimized for blue light: Shallow n* layer + specific antireflective coating.
* 625 (25 x 25) microcells. '

Dead region L
. Edge breakdown

o SIZG 40 IJ.m X 40 |J.m falsis . i : sl : preventing structure
* Polysilicon quenching resistance. - = .

* Fill factor (GF) up to 30%. L

» optical trenches to avoid cross-talk. ; 4pm
SiPMs from development runs tested L \
subsirate :

I
Trench covered with metal
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New detectors recently produced

o Different geometry, size, microcell size and GF.

50%50un

40x40um => GF 44%,
50x50um  => GF 50%
100x100pum => GF 76% e

circular (1mm diam) 1x1mm 2x2 mm 3x3 mm (3600 cells) 4x4 mm (6400 cells)
o Matrices 16 elements (4x4) b ahiidale
IV CURVES OF 9 MATRICES. %.*1:5-03
E VERY UNIFORM _mg f
b BREAKDOWN POINT C

0 5 10 15 20 25 30 35
Vrev [V]

Gabriela.Llosa@pi.infn.it LIGHTO7 23-28 September 2007 6



Evaluation of FBK- irst SiPMs for PET and
PET/MR

» Characterization
— Electro-optical characterization
— Intrinsic timing
— Photon detection efficiency
— Variation with temperature
 Evaluation for PET and PET/MR.
— Energy resolution
— Coincidence timing resolution.
— Results in an MR system
— First results with SiPM matrices
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Results: characterization

Room temperature
* Breakdown voltage VB ~ 30V, very good ool
uniformity (0.4 V sigma). soof
* Operation 2-5 V overvoltage.
 Single photoelectron spectrum: well resolved -
peaks from at room temperature. ! .
e Gain: ~10°

— Linear for a few volts over VBD.

— Related to the recharge of the diode
capacitance CD from VBD to vBIAs during the ¢
avalanche quenching. G=(VBIAS-VB) x Cb/q

Vhiaz (V)
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Results: Noise

Dark rate:

— 1-3 MHz at 1-2 photoelectron (p.e.) level,

~KHz at 3-4 p.e (room temperature).

— Not a concern for PET applications.
— Reduced in the new detectors

Cross talk below 5% at 4V overvoltage.

Dark Count Rate (Hz)
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Photon detection efficiency

PDE = QE x Pt x GF
.

—

T | Geometrical

efficiency:
Quantum efficiency Avalanche triggering probability Active area /
-Intrinsic quantum efficiency Pt=Pe+Ph-PePh Total area of
-Transmission factor of the -Electrons have higher probability because of the || microcell
coating T=(1-R) higher ionization rate (Pe>Ph).

-In any case, the higher the Vbias, the higher Pt.
- For a given SiPM structure, it depends on the
interaction position, i.e, on the wavelength.

QE= (1-e“™)(1-R)

QE optimization

Probability of -
hotoabsorotion once th * n+p structure: Pt higher for
photoabsorption once € | y,5t0ns interacting deeper

photons have traversed the | => very shallow epi layer.
coating. * Anti-reflective coating
nN=n(}) linear absorption | °PMzed for 420 nm
coeficient.
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Results: PDE PDE = GE x Pt x GF

100

QE > 95% @ 420 nm

" QE above 95% for 420 nm light _______ ~-
wavelengh (LSO emission). £ i .
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Results: PDE Il ppe- gz x ptx aF

device with ¢ ~22%

geom
18
] * 1.5V overvoltage
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Temperature dependence

o [V curves at different temperature
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Temperature dependence |

e (ain vs Bias vs Temperature
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Results: intrinsic timing

* Intrinsic timing measured at the s.p.e level: 60 ps sigma for blue light.

o SiPM illuminated with a pulsed laser with 60 fs pulse width and 12.34 ns
period, with less than 100 fs jitter.

* Two wavelengths measured: A =400 =7 nmand A =800 15 nm.

Time difference between contiguous pulses is determined.

time (ns)
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Results: intrinsic timing I

* The timing decreases with the number of photoelectrons as 1/vNpe.

20 ps at 15 photoelectrons.

Co
=

sigmad (ps)
=]

(%
L}
=

IIM"\, e =400 nm
0 \t\ ' at 4 V overvoltage
40 | \3\
G. Collazuol at VCI 2007, to be published in NIM A. wor
10 - fit as 1/\/(Npe)
0
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Results: energy resolution

[ Na-22 energy spectrum (coincidence) |

: 700 [42]ndf = 24.38/ 33

Energy resolution: 20% FWHIM. oof | Cen eaino
F Mean 1.248e-08 + 1.136e-11

500 ? Sigma  1.067e-09 = 1.203e-11

(best result: 17.5 %)

Improvement expected with new SiPMs with ~ s»-
higher PDE, better coupling and noise 200~

400

reduction. 100 &
g T e ("“#?"“‘
etu[!: ignal area (a.u.

¢ 2LSO 1Tmmx 1mm x 10mm
crystals coupled to 2 SiPMs.

* Home made amplifier board.
* Time coincidence of signals.
« VME QDC for DAQ.

e 2Na source.
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Results: Peak position and energy resolution vs bias

* Peak position P ~ Nph x PDE x G => Parabolic with AV.
PDE oc AV
G=AVxCD/qe

 Energy resolution R ~ 1/v/P

\ Peak position vs. overvoltage | Energy resolution vs. overvoltage
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Results: coincidence timing

¥2 1 ndf 157.2 (121

* Coincidence measurement with two LSO~ «f" o a91e00: 7380z
crystals and two SiPMs =
Measured ot ~ 600 ps sigma. -
* Theory for two scintillators in coincidence: ~ *-
ot =20 ~ 567 ps . 3

Where VO T e

o Post, Schiff. Phys. Rev. 80 p. 1113 (1950).

<N> = average number of photons: ~ 100 photons at the photopeak.

Q = Trigger level: ~1 photoelectron.
T = Decay time of the scintillator ~ 40 ns

Measurements in agreement with what we expect.
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 Differences in peak position due to temp

* Pickup in baseline when switching on and

Results: tests in MR system

S.p.e and *Na energy spectra acquired with
gradients off (black line) and on (red line).  oof-

[ — gradients off
No difference is appreciated in the data. b } |, — gradientson

6000

changes in the magnet (change in gain due m-J‘ |
to variation in breakdown voltage). No | LL,;, S .. R
variation for short acquisition time.

| 227Na spectrum \
14000

— gradients off
— gradients on

12000

off.

10000—

8000—
6000 —
4000—

2000—

Cooa by by b by o b Ly w oy L
ul] 20 40 60 80 100 120 140 160 180

R
200 220 240
QDC channel
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Results: matrices

* Test matrices of 4 SiPM pixels in the same
substrate tested.

* Home made 4 amplifier board.
 (Coincidence with scintillator+PMT.

 Signals from the 4 SiPMs acquired
independently and summed up.

* Energy resolution 30% FWHM.

— Same as taking the data with one of the
SiPMs in the matrix.

— Same as single SiPM with similar GF.

NQO degradation wrt single SiPMs.

1 mm

sipm matrix coupled to LSO (1x1 mmA2) coincidence with PMT

¥2/ ndf =

61.54/53

2501=

Constant
Mean
Sigma

209.2+ 3.1
9304 + 17.9
1177+ 23.9
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Application to medical imaging: high resolution PET

The use of SiPM matrices allows significant improvements in the design of a
detector head for a small animal PET tomograph:

 High photodetection efficiency: SiPM matrices leave low dead area wrt arrays of single
SiPMs.

o Stack of several detector layers thanks to compactness:

— Scintillator thickness can be increased => High efficiency

— DOl information that reduces parallax error =>_high spatial resolution.

Use of continuous scintillator slabs + finely pixellated SiPM matrix
instead of segmented scintillator blocks + PSPMT:
 Very good spatial resolution maintaining high efficiency.
* |ow cost.

MR compatibility: SiPMs are compact (detectors fit in magnet bore)
and insensitive to magnetic fields.
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Detector head performance

Geometry optimization and performance estimated with GEANT4 simulations.

Head geometry: stack of three detector layers (4 cm x 4 cm).
— Scintillator: continuous slab of LSO or LYSO, 5 mm thick.
—  SiIPM matrix with 1.5 mm pitch elements as photodetector.
Head performance:

— About 70% efficiency for 511 keV photons.

— Intrinsic spatial resolution — 0.3 mm FWHM in the center of the crystal

< Tmm in the edges.

* Center-of-gravity position determination algorithms worsen resolution and displacement

errors towards the edges.
* ML methods (skeweness and barycenter based) reduce error towards the edges.

— backscattering within a detector head < 5%.
Maximum parallax error for two detector heads at 10 cm: 1 mm.

S. Moehrs et al. A detector head design for small-animal PET with silicon photomultipliers (SiPM).
Phys. Med. Biol. 51 (2006) 1113-1127.
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PET applications: VHR PET

4-head tomograph (same concept as YAP(S)-PET):
— 2(4) rotating detector heads at 10-15 cm distance.
— FOV 4 cm axial, 4 cm transaxial.
— efficiency around 4%.
— Spatial resolution well below 1 mm?3for a point source in the CFOV.

— |ow cost.
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PET applications: MR compatible ring tomograph

PET insert for simultaneous PET/MR.
— 16 detector heads, 7 cm x 2.4 cm;
— FOV axial 7 cm, transaxial FOV ~6 cm.
— Spatial resolution: 0.76 mm for a "®F point source in the CFOV with FBP.
— efficiency around 11% for 250 keV energy threshold.
— To be inserted in magnet bore.

-

-
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Conclusions

 SiPMs are a novel type of solid state photodetectors, with important advantages
over the existing ones and potential for improvement.

 FBK-irst is developing SiPMs and SiPM matrices. The first results obtained are
extremely encouraging. New devices with improved characteristics have been
produced and are being tested.

 SiPMs from FBK-irst have been evaluated for their use in the PET tomograph
construction. The results obtained are very good: energy resolution 20% FWHM
for 511 keV photons, intrinsic timing resolution of 60 ps sigma, and 600 ps
coincidence timing resolution. The possibility of employing SiPMs in an MR
system has been assessed.

e A very high resolution PET tomograph for small animals and a MR compatible
PET insert employing SiPMs, are under development at the University of Pisa. A
spatial resolution of 0.76 mm FWHM is expected for a '®F point source in water in
the centre of the FOV, with FBP, according to GEANT4 simulations.
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o Several presentations accepted at IEEE NSS-MIC 2007

— N41-2: C. Piemonte. Recent Progress in the Performance of Silicon
Photomultipliers produced at FBK-irst.

— M14-4: G. Llosa et al. Silicon Photomultipliers and SiPM matrices as
photodetectors for Scintillator readout in Nuclear Medicine.

— M18-11: R. Hawkes et al. Silicon Photomultiplier performance tests in
Magnetic Resonance Pulsed Fields.

— N15-49: C. Marzocca et al. Preliminary results from a Current-Mode
CMOS Front-end circuit for Silicon Photomultiplier detectors.

See you in Hawaii !!
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