Overview of RMD Silicon Semiconductor Detector Activities

Mickel McClish

Radiation Monitoring Devices Inc., Watertown, MA USA

LIGHT07

Workshop on the Latest Developments of Photon Detectors 2007

RMD

OVERVIEW

- Planar Process for Deep Diffused Silicon APDs and Position Sensitive APDs (PSAPDs)
- Characteristics of Planar APDs and PSAPDs.
- Detector Applications
 - Positron Emission Tomography (PET)
 - * High-Energy Physics Experiments (LXe)
 - *** Homeland Security**
- SSPM Development
- Summary

Planar Process for APD Fabrication

R Farrell, K.S. Shah, K. Vanderpuye, R. Grazioso, R. Myers, G. Entine, "APD arrays and largearea APDs via a new planar process," *Nuc. Inst. Meth. Phys. Res. A*, vol. 442, pg. 171, 2000.

Fabrication for Position Sensitivity

K.S. Shah, R. Farrell, R. Grazioso, E. Harmon, E. Karplus, "Position-sensitive avalanche photodiodes for gamma-ray imaging," *IEEE Trans. Nuc. Sci.*, vol. 49, no. 4, August 2002

RMN

Various APDs and PSAPDs

RMD

APD/PSAPD Gain and Noise

8 x 8 mm² APD at room temperature (24 °C)

APD/PSAPD Quantum Efficiency

Current Major APD/PSAPD Projects

- Medical Imaging
 - Small Animal PET
 - *** UC-Davis (Simon Cherry)**
 - Stanford University (Craig Levin)
 - & UC-SF (Bruce Hasegawa)
- High-energy physics experiments
 - LXe studies at Rice (Uwe Oberlack) and Brown Universities (Rick Gaitskell)
- Homeland Security

UC-Davis PET/MRI Prototype

PET/MRI Prototype

PET/MRI Prototype Phantom Images

C. Cantan, Y. Wu, M.S. Judenhofer, J. Qi, B.J. Pichler, S.R. Cherry, "Simultaneous acquisition of multi-slice PET and MR images: initial results with a MR-compatible PET scanner," *J. Nucl. Med.*, vol. 47, no. 12, pp. 1968-1976, Dec. 2006.

Small Animal SPECT

Mouse heart phantom images

SPECT module comprised of 4 x 4 array of 8 mm PSAPDs.

Still under construction.

RMD

Detector for dark matter search?

- LXe scintillation signals can be very small for lower energy events, favoring a photodetector with higher QE than that available in PMTs
- PMTs can have relatively high background due to radioactivity
- PMTs can be fragile and break due to the thermal stresses experienced in the presence of cold xenon liquid or gas
- Tiled PMTs can possess significant dead space

HWU

Liquid Xenon Studies

Biasing Pins

RMN

Basic Setup at Rice University

Liquid Xenon Studies

U. Oberlack, "Avalanche Photodiodes as Photosensors for Liquid Xenon Scintillation Light," IEEE Nuclear Science Symposium, San Diego, Oct. 30 2006

Liquid Xenon Studies

RMN

Measurements performed by Dr. Rick Gaitskell's group at Brown University.

Homeland Security

Monitoring the spread of nuclear materials requires scintillation based gamma-ray spectrometers to possess high sensitivity and high resolution.

14 x 14 mm² blue-UV sensitive APD

50 mm diameter LaBr₃:Ce

RMN

5 Ω-cm APD Gain, Noise, and QE

8 x 8 mm² APD at room temperature (24 °C)

LaBr₃:Ce based APD Spectrometer Prototype

SSPM Development

2nd generation Research SSPMs

Four quadrants, each having different pixel geometries & fill factors. The CMOS chip is 3 x 3 mm², with each quadrant 1.5 x 1.5 mm²

RMN

Summary

- Silicon APD and PSAPD technology is advancing & improving. Development & application is proceeding in...
 - Medical Imaging (PET and SPECT)
 - Physics research (LXe based systems)
 - Homeland security

CMOS SSPM technology is being actively researched at RMD. Our 2nd generation SSPM units are currently being characterized.

RMN

A uniform flood image and energy spectrum of a 7 x 7 CsI:Tl array with 3 mm pixels coupled to a 28 x 28 mm² PSAPD while cooled to -20°C and irradiated with ⁵⁷Co (122 keV)

A uniform flood image and energy spectrum of a 7 x 7 LSO array with 3 mm pixels coupled to a 28 x 28 mm² PSAPD while cooled to - 20°C and irradiated with ²²Na (511 keV)

RMN

electrons-RMS.

M. McClish, K.S. Shah, R. Farrell, F. Olschner, M. Squillante, "Characterization of very large silicon avalanche photodiodes," *IEEE NSS Conf. Rec.*, Oct. 16-24, 2004, Rome, Italy.

