

Unraveling the mysteries of blazars with the MAGIC telescopes Lea Heckmann

Lea Heckmann

Overview

Cosmic Rays

- -Discovery
- -Origin
- -Observation

Gamma-ray Astronomy

- -A novel Discipline
- MAGIC Telescopes
- -Air Showers in the Atmosphere
- -Imaging Air Cherenkov Technique

Active Galactic Nuclei

- -Introduction
- -Unification

Physics in Blazars

- Spectra and Emission Mechanisms
- -Open Questions

Cosmic Rays Discovery

Viktor Hess - 1912

"Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten"

Physikalische Zeitschrift 13, 1084

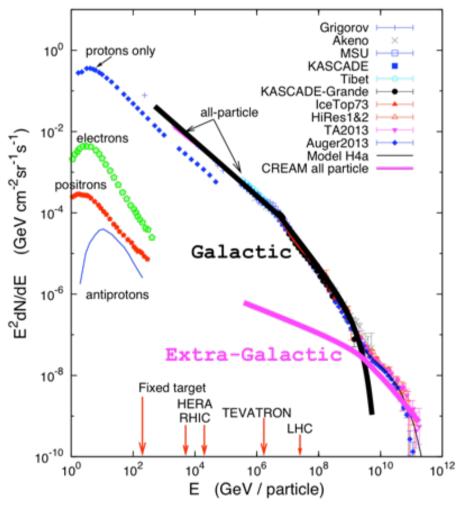
- 7 balloon journeys showed a strong increase in measured ions with altitude not dependent on
 - -meteorological parameters
 - -day/night cycles
 - -the sun (one flight during a partial solar eclipse)

[1] https://www.br.de/themen/wissen/kosmische-strahlung-victor-hess100.html

Nr.	Zeit	Mittlere Höhe		Beobachtete Strahlung					Relat.
				Apparat 1	Apparat 2	Apparat 3		Temp.	Feucht. Proz.
		absolut m	relativ m	q1	92	93	reduz. 93		1 102.
I	15h 15-16h 15	156	o	17,3	12,9	·	-)		
2 3 4	16h 15-17h 15	156	0	15,9	11,0	18,4	18,4	11/2 Tag vo	r dem Au.
3	17h 15-18h 15	156	0	15,8	11,2	17.5	17,5)	stiege (i	
4	6h 45- 7h 45	1700	1400	15,8	14,4	21,1	25.3	+6,40	60
56	7h 45- 8h 45	2750	2500	173	12,3	22,5	31,2	$+1,4^{0}$	41 - 64
6	8h 45- 9h 45	3850	3600	19,8	16,5 31,8	21,8	35,2	6,80	
7	9h 45-10h 45	4800	4700	40,7	31,8			-9,80	40
		(4400-	-5350)		The second second	_	1000		
8	10h 45-11h 15	4400	4200	28,1	22,7			10000	1000
8 9 10	11h 15-11h 45	1300	1200	(9,7)	11,5		-	-	
10	11h 45-12h 10	250	150	11,9	10,7		-	+16,00	68.
II	12h 25-13h 12	140	0	15,0	11,6			(nach der I Pieskow, B	Landung

7. Fahrt (7. August 1912).

his discovery of the positron."


radiation" and Carl David Anderson "for

The Nobel Prize in Physics 1936 was divided equally between Victor Franz Hess **"for his discovery of cosmic**

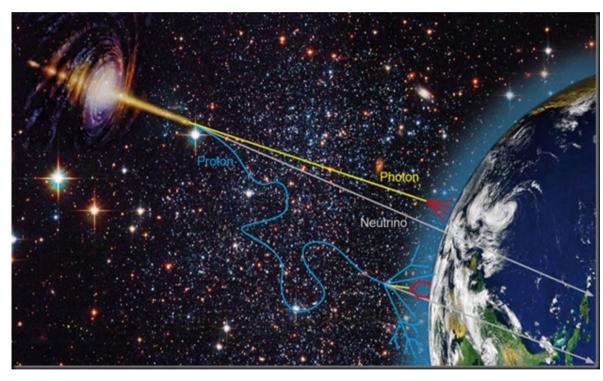
eskow, Brandenburg) [2] V. Hess (1912)

Lea Heckmann

Cosmic Rays Origin

Energies and rates of the cosmic-ray particles

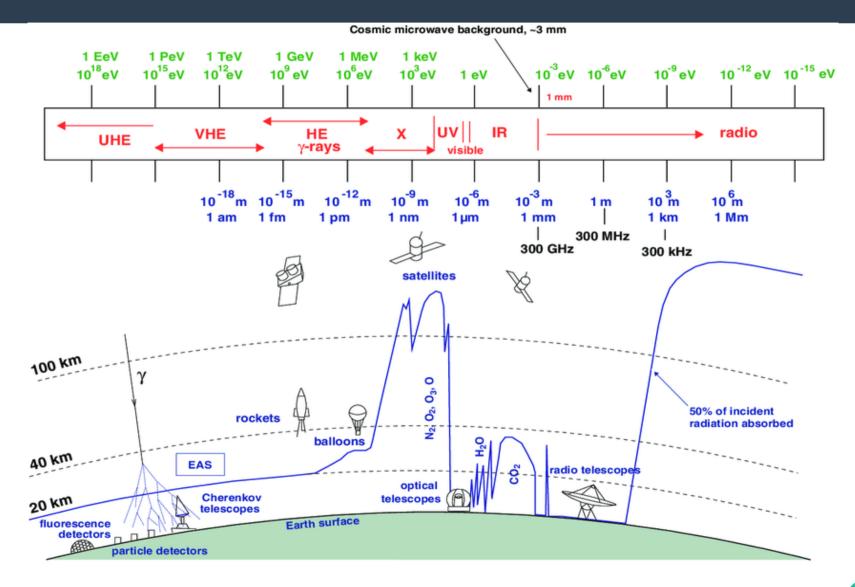
• Galactic


- Pulsars
- Supernova Remnants
- Pulsar Wind Nebula
- -Binary Systems
- -Young star

Extragalactic

- -Active Galactic Nuclei
- -Gamma-Ray Bursts
- Starburst galaxies
- Clusters of galaxies

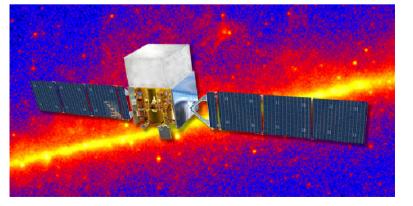
[3] https://masterclass.icecube.wisc.edu/en/analyses/cosmic-ray-energy-spectrum


Cosmic Rays Observation

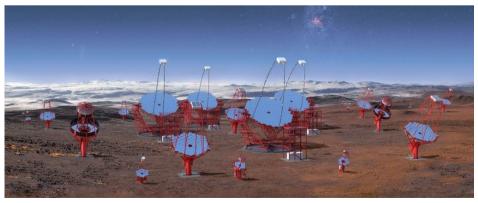
[4] https://bluexdragon.wordpress.com/2012/04/25/neutrinos-gamma-ray-bursts-and-what-went-wrong-with-our-model/

- Charged particles are deflected by the interstellar magnetic field
- Only neutrinos and photons take a direct path to earth

Cosmic Rays Observation



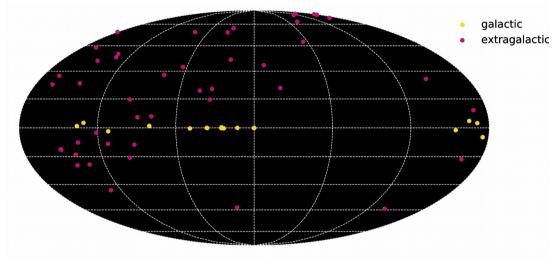
[5] Longair, S. M. (1992)



Gamma-Ray Astronomy A novel discipline

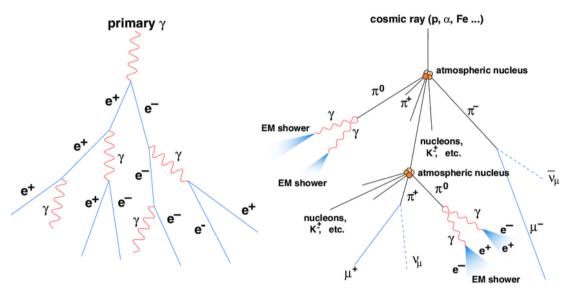
	Exploration phase ~ 10 Sources	Established Field ~ 100 Sources	"Ultimate" Generation (Population + Precision Studies)	
Space	1970s (SAS-2,COS-B)	1990s (EGRET)	~1.000-10.000 Sources Now (Fermi)	
Ground	1980-90s (WHIPPLE, HEGRA,CAT)	2000s (Cangaroo, HESS, MAGIC, VERITAS)	Future (CTA)	

[6] https://fermi.gsfc.nasa.gov/science/constellations/pages/fermi.html


[7] https://www.eso.org/public/news/eso1841/

Lea Heckmann

Gamma-Ray Astronomy MAGIC Telescopes


[8] Robert Wagner

- Two Imaging Atmospheric Air Cherenkov Telescopes (IACTs)
- Placed on La Palma (Canary Islands)
- At 2200m above sea level
- Diameter: 17m
- Energy range: 50 GeV to 50 TeV

Gamma-Ray Astronomy Air Shower in the Atmosphere

[9] M. Otte (2007)

EM cascades

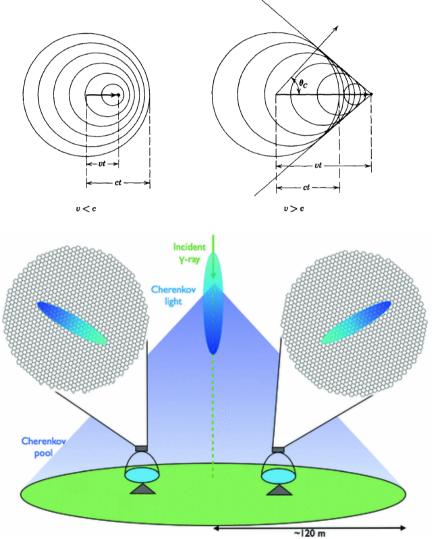
 $-\gamma \rightarrow e^+/e^-$ pair creation

 $-e \rightarrow \gamma$: Bremsstrahlung

-...

$$-H_{max} = 1/ln(E_{v})$$

-Duration: 3ns


Hadronic cascades

- Mostly пº, п+, п-creation
- -Some kaons and light baryons
- -Further collisions until Emin for for π production
- -Duration: 10ns

[10] R. López Coto (2017)

Gamma-Ray Astronomy IACT Technique

[11] https://icecube.wisc.edu/~kjero/Boqtcamp/2015/Notebooks/Reconstruction_Introduction.html

Cherenkov radiation

- -Pavel Cherenkov 1934
- -Charged particle with v>c in a medium

→ Electromagnetic shock wave to compensate non-symmetric polarisation in the medium

 \rightarrow Radiation emitted in form of a cone

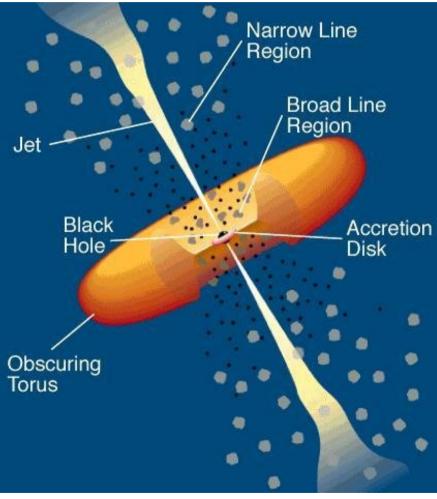
In the atmosphere

- One particle produces a ring on the ground
- Superposition → Circle of Cherenkov light
- This is collected by the telescopes

[10] R. López Coto (2017)

Ringberg Workshop - 2019-07-22

Lea Heckmann

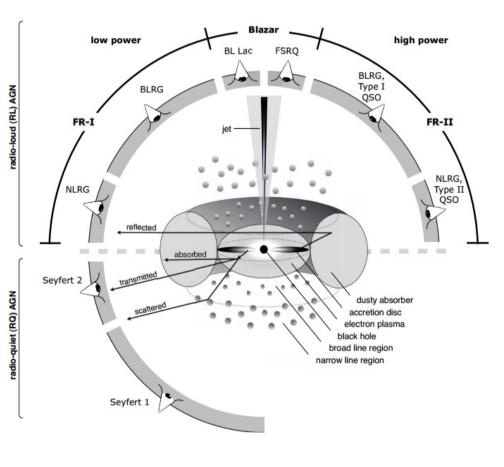

Active Galactic Nuclei (AGN) Introduction

[13] http://www.astro.princeton.edu/~lilew/

- Extragalactic sources of cosmic rays
- Bright compact nucleus in the center of galaxy
- Most luminous persistent sources in the universe
- Variable in time
- Often accompanied with two jets
- Highly energetic physics
 laboratories

Active Galactic Nuclei Model

[14] Urry & Padovani 1995


• Black hole: 10-3-10-7 pc

M bigger than 10⁵ solar masses
Spin

- Accretion disc: 10-7-1 pc
- Broad line region: 0.01-1 pc – High velocity gas (a few 1000km/s)
- Dusty torus: 0.01-10 pc
- Narrow line region: 10-1000 pc
 - -Low velocity gas (300-1000km/s)
- Jet: 10⁻⁷-10⁶ pc

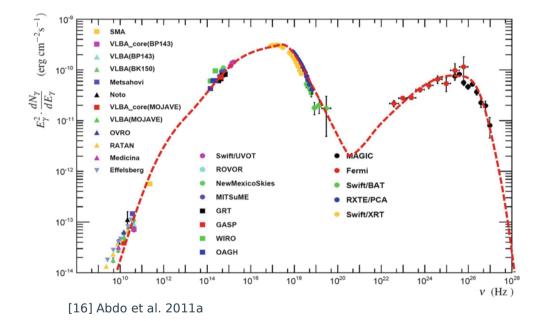
 $1 pc = 3,086 \cdot 10^{16} m$

Active Galactic Nuclei Unification Scheme

[15] Beckmann & Shrader 2012

Unification scheme by

- -Viewing angle
- -Accretion efficient/inefficient
 - \rightarrow high/low power
- -Jetted/Non-jetted


Blazars

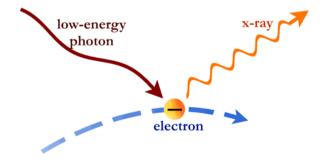
- -AGNs with jets in our direction
- -Strong boosting along the jet
 - → High observed luminosities
- Highly variable emission

BL Lacs

- Blazars without broad emission lines in the optical spectra
- Inefficient accretion
 - \rightarrow Gas in the broad line region is not strongly ionised
- Mostly at low redshift, close to us

Physics in Blazars BL Lac - Spectra

Two component broadband spectra


- -Two bumps
- Location and height of the bumps changes with time/flux
- -Time variable on scales of minutes, days, months, years

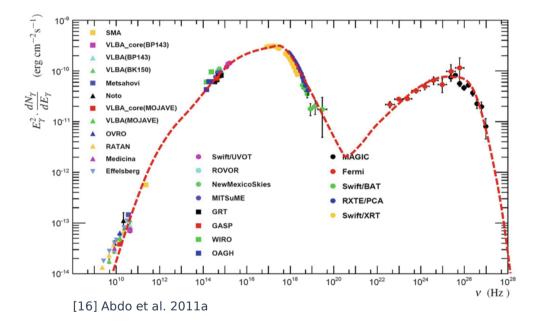
Models

- -Leptonic
- -Hadronic
- -Mixed

Physics in Blazars Radiative Mechanisms

[17] http://chandra.harvard.edu/resources/illustrations/x-raysLight.html

Synchrotron radiation


- Charged particle moving at a relativistic speed with a magnetic field present
 - → Forced on a circular or helical path (Lorentz force)
 - \rightarrow constant acceleration
 - \rightarrow emission of radiation
- Beamed in the direction of motion
- Only seen, if the beam is in the direction of the observer

Inverse Compton scattering

- A low energy photon scatters of a relativistic electron
 - \rightarrow It gains the electron loss energy

Lea Heckmann

Physics in Blazars BL Lac - Spectra

One zone self synchrotron model (SSC)

- Simplest leptonic model for blazars
- -One emission zone
- -Relativistic electrons in the jet
- -Lower energy peak: Synchrotron radiation
- -Higher energy peak: Inverse Compton radiation
- Seed photons for the IC are the original synchrotron photons

Physics in Blazars Open Questions

Which population of particles is producing the radiation?

- -Correlation between wavelengths \rightarrow Same emission location and population of particles
- -Delay? \rightarrow Evolution of particle population (acceleration, cooling,...)
- -Spectral models \rightarrow Leptonic or hadronic particles?

Periodicity Is there a binary black hole system? Is there precession taking place?

Which emission mechanisms and models can explain the observed spectra?

- -For one period of observation more than one model can explain the spectra satisfactorily
- -BUT: Different predictions on how it will evolve
- Evolution of the spectra with time or flux?

Summary

- The origin and mechanisms behind cosmic rays and their acceleration are still unknown
- MAGIC as part of the new multi-messenger era is trying to shed some more light on these mysteries
- Blazars are especially interesting because their jets accelerate particles to extremely high energies (at least 10¹⁴ eV, maybe up to 10²⁰)
- As soon as we have a better understanding of blazars
 - they can be use to probe the interstellar space
 - They can be used as direct probes of black hole physics
 - they can be used as fundamental physics laboratories with higher energies than CERN can ever reach