D-branes and K-theory or what's a D-brane charge?

Matthias Traube¹

¹Max Planck Institut für Physik

Young scientists Workshop Ringberg

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

An analogy: A particle

$$S \sim q \, \int_{\gamma} A \sim q \, \int_{I} A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau) d au$$
 (1)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

An analogy: A particle

$$S \sim q \, \int_{\gamma} A \sim q \, \int_{I} A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau) d au$$
 (1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A_µ vector potential for background electric field
q electric charge of particle

 $S\sim Q_p\,\int_{N_p}C_{p+1}$ (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$S \sim Q_p \int_{N_p} C_{p+1}$$
 (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$S \sim Q_p \int_{N_p} C_{p+1}$$
 (2)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\triangleright$$
 Q_p is D-brane charge

The End

$$S \sim Q_p \int_{N_p} C_{p+1}$$
 (2)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The End

Wait, weren't there open strings?

$$S \sim Q_p \int_{N_p} C_{p+1}$$
 (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The End

Wait, weren't there open strings?

And what about non trivial geometry for N_p ?

WARNING - ASSUMPTIONS: IDEAL MATH WORLD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

WARNING - ASSUMPTIONS: IDEAL MATH WORLD

- S be a 10 dimensional, compact, orientable, smooth manifold

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $f: N_p \hookrightarrow S$ is a smoothly embedded, p+1 dimensional (supersymmetric) cycle

WARNING - ASSUMPTIONS: IDEAL MATH WORLD

- S be a 10 dimensional, compact, orientable, smooth manifold
- $f: N_p \hookrightarrow S$ is a smoothly embedded, p+1 dimensional (supersymmetric) cycle

► N_p sufficiently complicated to suffice non trivial geoemtry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Strings?

► Stack of *N*-parallel D-branes $\Rightarrow E \rightarrow N_p$ rank n complex vector bundle

 \Rightarrow Open strings $\Leftrightarrow E$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$S \sim \int_{S} C \wedge ch(f_{!}E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

$$S \sim \int_{S} C \wedge ch(f_{1}E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

$$S \sim \int_{S} C \wedge ch(f_1 E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integration over spacetime

► $C \sim C_0 + C_2 + C_4 + C_6 + C_8 \Rightarrow$ Dp-branes charged under lower dim. fluxes

$$S \sim \int_{S} C \wedge ch(f_{1}E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

Integration over spacetime

► $C \sim C_0 + C_2 + C_4 + C_6 + C_8 \Rightarrow$ Dp-branes charged under lower dim. fluxes

• $\sqrt{\hat{A}(TS)}$ is kind of a normalization factor

$$S \sim \int_{S} C \wedge ch(f_1 E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

Integration over spacetime

► $C \sim C_0 + C_2 + C_4 + C_6 + C_8 \Rightarrow$ Dp-branes charged under lower dim. fluxes

• $\sqrt{\hat{A}(TS)}$ is kind of a normalization factor

Compare:

$$S_{int} \sim \int_{S} A \wedge j = \int_{S} A_{\mu} j^{\mu} d^{D} x$$
 (4)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$S \sim \int_{S} C \wedge ch(f_{1}E) \wedge \sqrt{\hat{A}(TS)}$$
 (3)

Integration over spacetime

► $C \sim C_0 + C_2 + C_4 + C_6 + C_8 \Rightarrow$ Dp-branes charged under lower dim. fluxes

• $\sqrt{\hat{A}(TS)}$ is kind of a normalization factor

Compare:

$$S_{int} \sim \int_{S} A \wedge j = \int_{S} A_{\mu} j^{\mu} d^{D} x$$
 (4)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 \Rightarrow ch(f₁E) is a charge current!

Assume we have a stack of N Dp-branes in a flat spacetime and the open strings decouple, i.e. $E \rightarrow N_p$ is a trivial rank N vector bundle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume we have a stack of N Dp-branes in a flat spacetime and the open strings decouple, i.e. $E \rightarrow N_p$ is a trivial rank N vector bundle.

 \Rightarrow Effects of open strings and non trivial geometry are absent.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Assume we have a stack of N Dp-branes in a flat spacetime and the open strings decouple, i.e. $E \rightarrow N_p$ is a trivial rank N vector bundle.

 \Rightarrow Effects of open strings and non trivial geometry are absent.

In that case we have

$$ch(f_{!}E) = N \,\delta(N_{p}), \quad \sqrt{\hat{A}(TS)} = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume we have a stack of N Dp-branes in a flat spacetime and the open strings decouple, i.e. $E \rightarrow N_p$ is a trivial rank N vector bundle.

 \Rightarrow Effects of open strings and non trivial geometry are absent.

In that case we have

$$ch(f_1E) = N \,\delta(N_p), \quad \sqrt{\hat{A}(TS)} = 1$$

This gives

$$S \sim N \int_{N_p} C_{p+1} \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So, $ch(f_!E)$ what is it?

(4日) (個) (目) (目) (目) (の)()

So, $ch(f_!E)$ what is it?

There are three pieces:

- 1) f_1 pushes E from N_p to S
- 2) Recall *E* was open strings. Assume you are given an anti-D-brane. If $ch(f_!E)$ is something charge like, anti-D-brane should have " *E*". Negativ amount of open strings?

3) $ch : K\text{-theory}/S \xrightarrow{\cong} H^{\bullet}(S)$ "Chern-character". Allows to write E in an action

So, $ch(f_!E)$ what is it?

There are three pieces:

- 1) f_1 pushes E from N_p to S
- Recall E was open strings. Assume you are given an anti-D-brane. If ch(f₁E) is something charge like, anti-D-brane should have " E". Negativ amount of open strings?
- ch : K-theory/S → H•(S) "Chern-character". Allows to write E in an action

So, $f_i E$ is an element in K-theory over $S \Rightarrow$ **D**-brane charges are not just numbers but elements in K-theory over spacetime

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What is "-E", or what is K-theory?

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

What is "-E", or what is K-theory?

K-theory allows to subtract stuff

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $(\mathbb{N},+)$ natural numbers. How to introduce subtraction in $\mathbb{N}?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $(\mathbb{N},+)$ natural numbers. How to introduce subtraction in \mathbb{N} ?

 $\Delta: \mathbb{N} \to \mathbb{N} imes \mathbb{N}$ $n \mapsto (n, n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>Def</u>: K-theory of natural numbers: $K(\mathbb{N}) \equiv \mathbb{N} \times \mathbb{N}/\Delta(\mathbb{N})$

 $(\mathbb{N},+)$ natural numbers. How to introduce subtraction in \mathbb{N} ?

 $\Delta: \mathbb{N} \to \mathbb{N} imes \mathbb{N}$ $n \mapsto (n, n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>Def:</u> K-theory of natural numbers: $\mathcal{K}(\mathbb{N}) \equiv \mathbb{N} \times \mathbb{N}/\Delta(\mathbb{N})$ <u>Claim:</u> $\mathbb{Z} \cong \mathcal{K}(\mathbb{N})$

 $(\mathbb{N}, +)$ natural numbers. How to introduce subtraction in \mathbb{N} ?

$$\Delta:\mathbb{N}\to\mathbb{N} imes\mathbb{N}$$

 $n\mapsto(n,n)$

<u>Def:</u> K-theory of natural numbers: $K(\mathbb{N}) \equiv \mathbb{N} \times \mathbb{N}/\Delta(\mathbb{N})$ <u>Claim:</u> $\mathbb{Z} \cong K(\mathbb{N})$ <u>proof:</u> Consider [(a, b)] + [(b, a)] = [(a + b, a + b)] = 0 $\Rightarrow -[(a, b)] \equiv [(b, a)]$

 $(\mathbb{N},+)$ natural numbers. How to introduce subtraction in \mathbb{N} ?

$$\Delta:\mathbb{N}\to\mathbb{N} imes\mathbb{N}$$

 $n\mapsto(n,n)$

<u>Def:</u> K-theory of natural numbers: $K(\mathbb{N}) \equiv \mathbb{N} \times \mathbb{N}/\Delta(\mathbb{N})$ <u>Claim:</u> $\mathbb{Z} \cong K(\mathbb{N})$ <u>proof:</u> Consider [(a, b)] + [(b, a)] = [(a + b, a + b)] = 0 $\Rightarrow -[(a, b)] \equiv [(b, a)]$

 $\begin{aligned} a \ge b \Rightarrow a = c + b \Rightarrow [(c + b, b)] = [(c, 0)] + [(b, b)] = [(c, 0)] \\ a \le b \Rightarrow b = a + d \Rightarrow [(a, a + d)] = [(a, a)] + [(0, d)] = [(0, d)] \end{aligned}$ Hence the map $f : \mathbb{Z} \to K(\mathbb{N})$ is an isomorphism

$$f(n) = \begin{cases} [(n,0)] & \text{if } n \ge 0\\ [(0,n)] & \text{if } n < 0 \end{cases}$$

K-theory of vector bundles

Deonte $\mathcal{V} \equiv (Vect(S), \oplus, \otimes)$ the rig of finite rank complex vector bundles over a compact manifold S.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

K-theory of vector bundles

Deonte $\mathcal{V} \equiv (Vect(S), \oplus, \otimes)$ the rig of finite rank complex vector bundles over a compact manifold *S*.

We can add (\oplus) and multiply (\otimes) vector bundles, but no subtraction!

K-theory of vector bundles

Deonte $\mathcal{V} \equiv (Vect(S), \oplus, \otimes)$ the rig of finite rank complex vector bundles over a compact manifold S.

We can add (\oplus) and multiply (\otimes) vector bundles, but no subtraction!

 $\Rightarrow K(\mathcal{V})$ has subtraction (in fact is a ring), i.e. " - E" makes sense in $K(\mathcal{V})$.

For $\mathcal{K}(\mathcal{V})$ charges it is possible that Dp-anti Dp-branes annihilate and leave lower dimensional branes.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Take home message

- 1) Dp-branes are charged under all lower dimensional C_q .
- 2) There is a mathematical framework describing the charges (K-theory).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3) Open string effects and geometry of worldvolume lead naturally to K-theory as the right framework.

Take home message

- 1) Dp-branes are charged under all lower dimensional C_q .
- 2) There is a mathematical framework describing the charges (K-theory).
- 3) Open string effects and geometry of worldvolume lead naturally to K-theory as the right framework.

The end (for real)

For the D-brane aficionado

K-theory over spacetime is particularly nice in respect of the Sen conjecture: Every D-brane configuration arises from a D9-anti D9 brane condensate!

In $K(\mathcal{V})$ we have $[E] = [F] \Leftrightarrow \exists \underline{n} \text{ s.th. } E \oplus \underline{n} \cong F \oplus \underline{n}$, this is like saying things are equivalent iff we can add decoupled (trivial) theories s.th. they are equal (stably equivalent). This easily follows from thefact that $E \to M$ cplx. vector bundle over compact manfield has a complementary cplx. vector bundle $\tilde{E} \to M$ s.th. $E \oplus \tilde{E} \cong \underline{m}$ for some $m \in \mathbb{N}$.

All of the above was for type IIB. For type IIA we get as charge space, roughly speaking, $K^1(S) = K(S^1 \wedge S)$, where $S^1 \wedge S$ is the smash product of spacetime with the unit circle.

There is an approach to K-theory using maps from the base space to a space of Fredholm operators in an infinite dimensional Hilbert space (c.f. Basic Bundle Theory and K-Cohomology Invariants, chapter 20, theorem 2.2). One can use this definition to define K-theory on non-compact spaces and furthermore incorporate non-trivial *H*-flux (twisted K-theory, Atiyah-Hirzebruch-Spectral-Sequence).