Track parameter propagation for different detector and magnetic field setups in atts

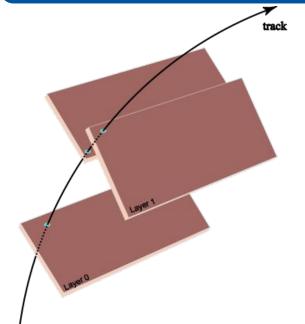
> Fabian Klimpel CERN, TU Munich fklimpel@cern.ch 24.07.2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

<u>Overview</u>

- Introduction
 - \circ Tracking
 - Acts
 - Track reconstruction
- Track parametrisation
- Track parameter propagation in the detector
 - StraightLine approximation
 - Runge-Kutta-Nyström integration
 - In matter and time
 - Covariance transport
- Bigger picture and summary

What is Tracking?

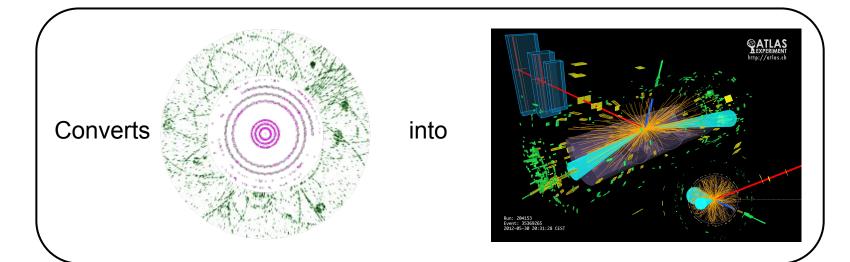


Particle collisions produce particle that traverse the detector(material) and produce signals (measurements)

Cloud of measurements needs to be associated to the particles that produced it

→ Knowledge about the event

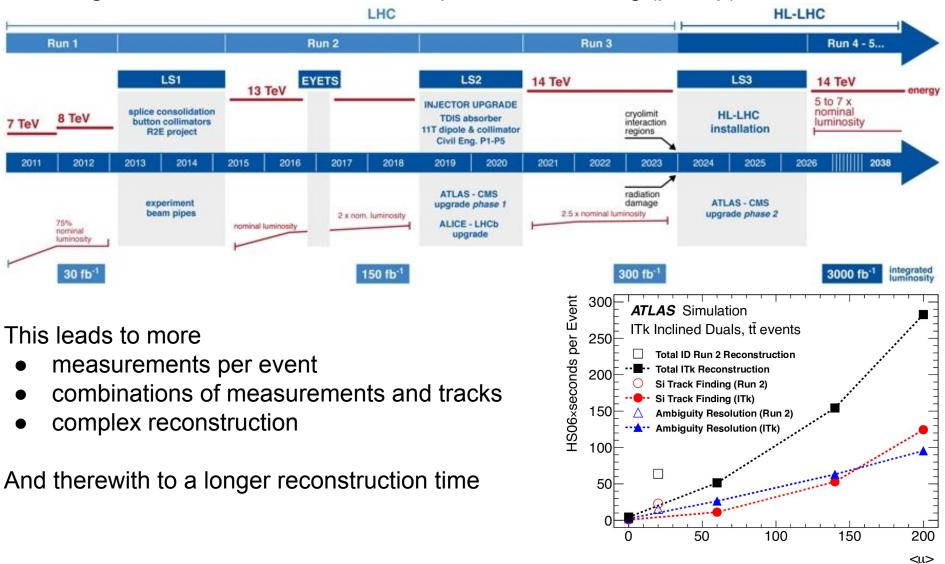
→ Learn about physics



Introduction

Future of tracking

As time goes on the amount of collisions per bunch crossing (pile-up) will be increased



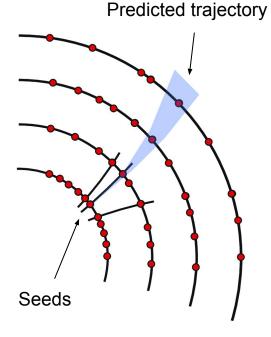
Tracking R&D: ACTS

A project to provide all required tracking components is ACTS (A Common Tracking Software)

- Detector independent tracking software
- Aims to replace current ATLAS tracking
- Development ongoing since 4 years
- Guidelines:
 - Minimal external dependencies
 - Optimised hardware usage
 - Provide long time maintainability
- Based on rewritten tracking algorithms
- Allows comparing, testing and improving of the code
- Matching at least HL-LHC physics requirements

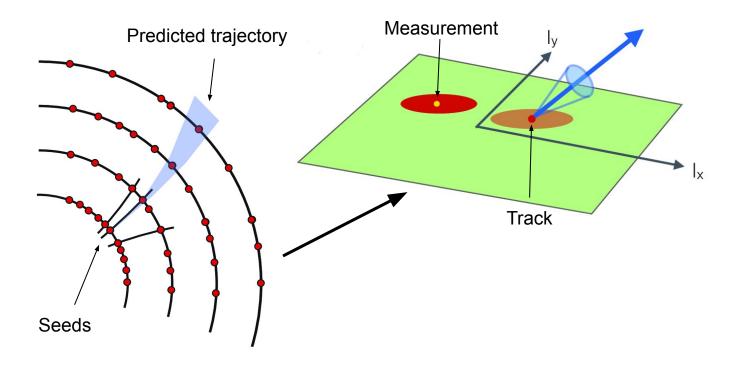
Association is performed by

- 1. using an initial guess of the particle properties (= seed)
- 2. extending the trajectory



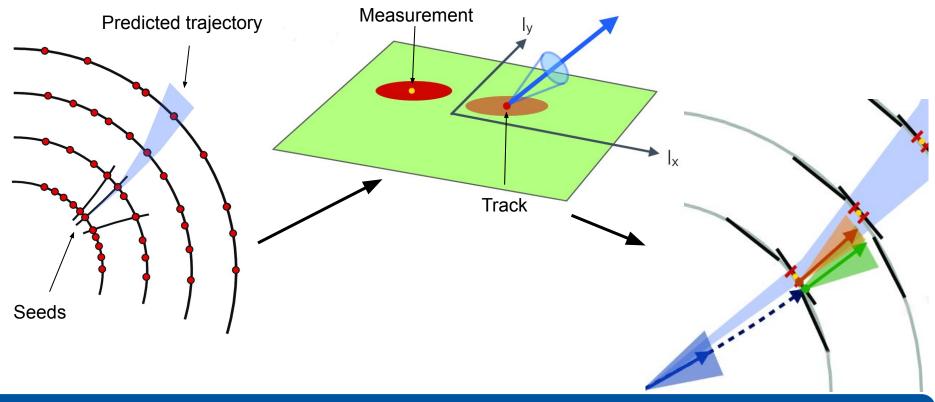
Association is performed by

- 1. using an initial guess of the particle properties (= seed)
- 2. extending the trajectory
- 3. searching for corresponding measurements along the way



Association is performed by

- 1. using an initial guess of the particle properties (= seed)
- 2. extending the trajectory
- 3. searching for corresponding measurements along the way
- 4. update the guess with the new data

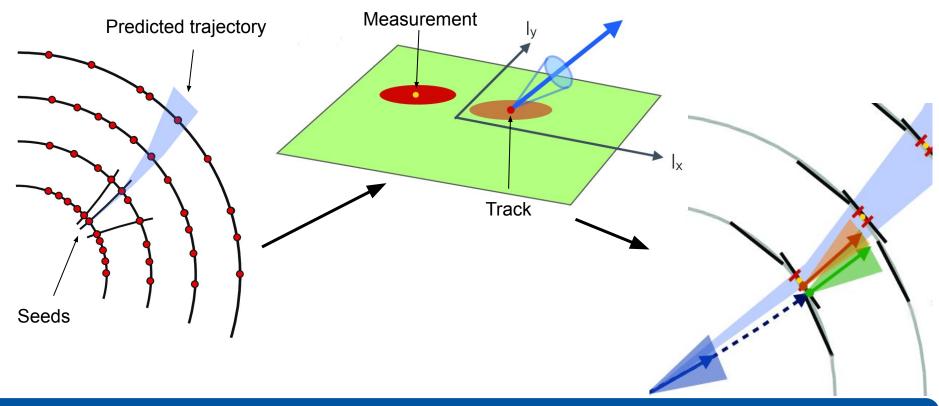


Association is performed by

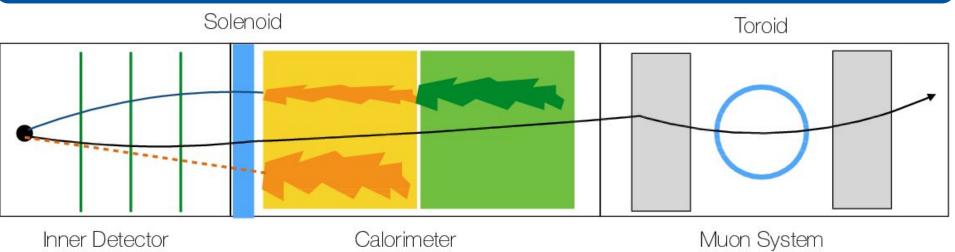
- 1. using an initial guess of the particle properties (= seed)
- 2. extending the trajectory
- 3. searching for corresponding measurements along the way

Today's topic

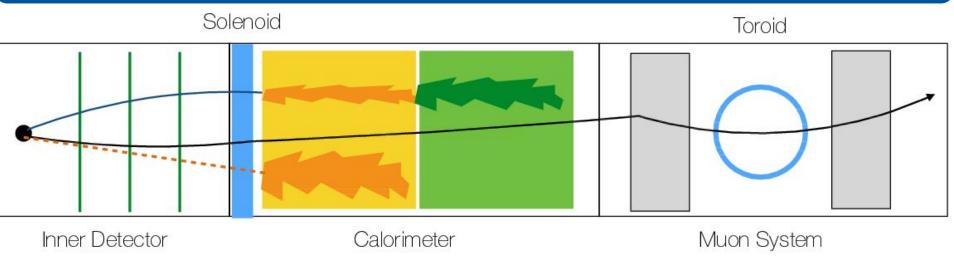
4. update the guess with the new data



Detector description

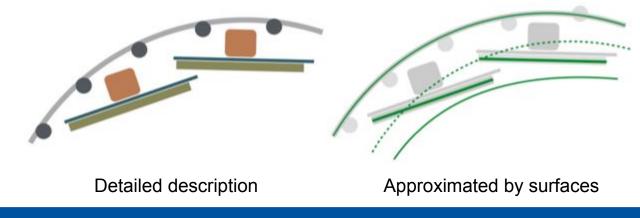


Detector description



Inner Detector:

- Architecture can be approximated as set of surfaces
- Material is mapped onto the surfaces (discrete interactions)
- Can be either active (= detector module) or passive (= pure material)



Track parametrisation

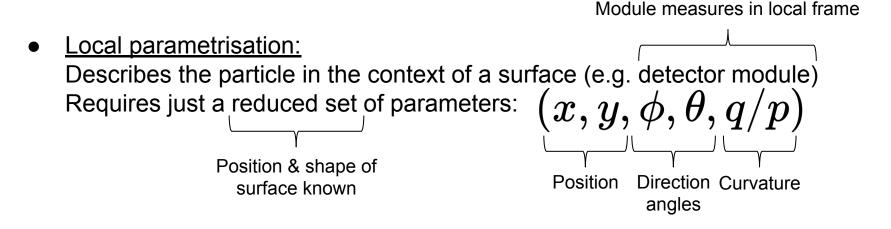
In order to parametrise a track, 2 different representations are used:

• <u>Global parametrisation:</u> Describes the particle everywhere Given (in ATLAS) by $(x, y, z, T^x, T^y, T^z, q/p)$ Position (Normalised) Direction Curvature

Track parametrisation

In order to parametrise a track, 2 different representations are used:

<u>Global parametrisation:</u> Describes the particle everywhere $(x,y,z,T^x,T^y,T^z,q/p)$ Given (in ATLAS) by Position (Normalised) Direction Curvature



Track parametrisation

In order to parametrise a track, 2 different representations are used:

<u>Global parametrisation:</u> Describes the particle everywhere $(x,y,z,T^x,T^y,T^z,q/p)$ Given (in ATLAS) by Position (Normalised) Direction Curvature $J_{l2g} J_{g2l}$ Module measures in local frame Local parametrisation: Describes the particle in the context of a surface (e.g. detector module) Requires just a reduced set of parameters: $(x,y,\phi, heta,q/p)$ Position & shape of Position Direction Curvature surface known angles

Parameter propagation

Goal: Extension of the trajectory to the next surface to search for measurements

To estimate the trajectory we need to consider

- 1. Deflection by magnetic field
- 2. (Multiple) Scattering in material
- 3. Energy loss (e.g. by ionisation)

In the inner detector these effects only occur on the surfaces = <u>discrete & isolated from propatation</u>

Parameter propagation

Goal: Extension of the trajectory to the next surface to search for measurements

To estimate the trajectory we need to consider

- 1. Deflection by magnetic field
- 2. (Multiple) Scattering in material
- 3. Energy loss (e.g. by ionisation)

In the inner detector these effects only occur on the surfaces = <u>discrete & isolated from propatation</u>

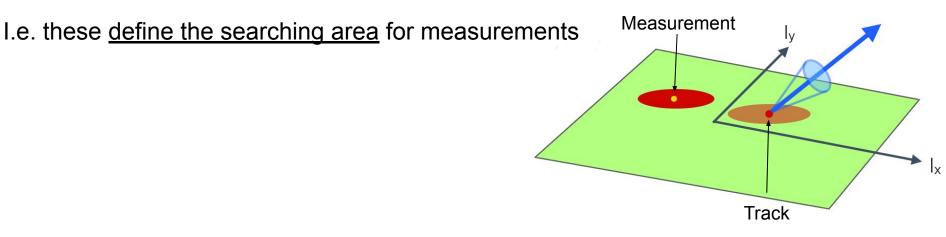
Simplest case: No magnetic field in the inner detector = <u>StraightLine</u> approximation Given our starting position $\vec{y}_0^{global} = (x_0, y_0, z_0, T_0^x, T_0^y, T_0^z, q/p_0)$

We can move to the next surface in distance h by evaluating

$$ec{r}_1^{global} = egin{pmatrix} x_1 \ y_1 \ z_1 \end{pmatrix} = egin{pmatrix} x_0 \ y_0 \ z_0 \end{pmatrix} + h egin{pmatrix} T_0^x \ T_0^y \ T_0^z \end{pmatrix}$$

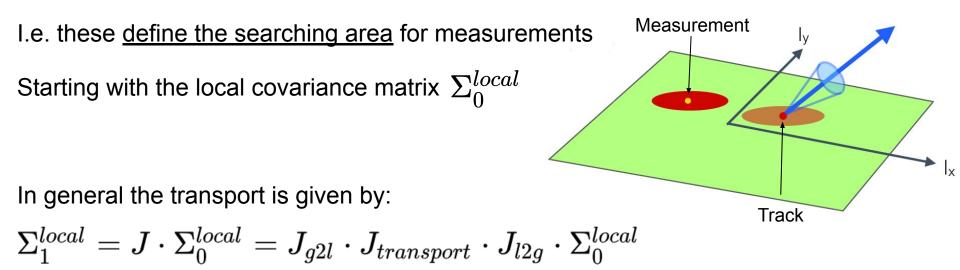
Uncertainty propagation

Beside the propagation one is interested in the propagation of the uncertainties



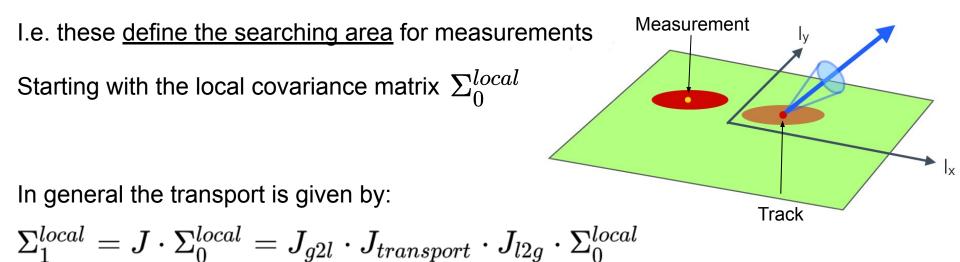
Uncertainty propagation

Beside the propagation one is interested in the propagation of the uncertainties



Uncertainty propagation

Beside the propagation one is interested in the propagation of the uncertainties



In the StraightLine approximation this can be easily done by hand:

No change at all
$$J_{transport} = \begin{pmatrix} 1 & 0 & 0 & h & 0 & 0 \\ 0 & 1 & 0 & 0 & h & 0 \\ 0 & 0 & 1 & 0 & 0 & h \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
Effect of direction on position

Propagation in magnetic fields

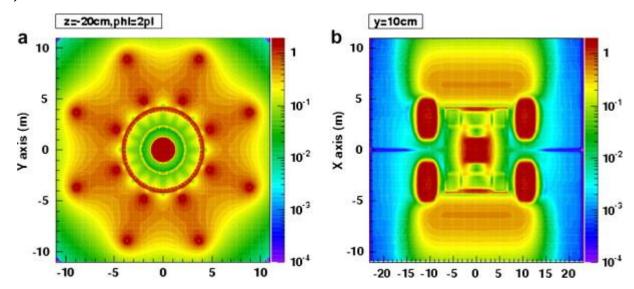
A present B-field makes the propagation more complicated

For each charged particle the StraightLine approach is invalid

The underlying equation of motion is given by the Lorentz force

$$rac{d^2ec{r}}{ds^2} = rac{q}{p} \Big(rac{dec{r}}{ds} imes ec{B}\left(ec{r}
ight) \Big)$$

As soon as $\vec{B}(\vec{r})$ is not constant (= common real case) there is not analytic solution



→ Numerical approach required

A numerical approach should satisfy 2 things: Accuracy and Speed

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

A numerical approach should satisfy 2 things: Accuracy and Speed

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

1. Translation of the problem into
$$\frac{d}{ds} \left(\vec{r} \atop \vec{T} \right) = \left(\begin{array}{c} \vec{r}' \\ \frac{q}{p} \left(\vec{T} \times \vec{B} \left(\vec{r} \right) \right) \end{array} \right)$$

A numerical approach should satisfy 2 things: Accuracy and Speed

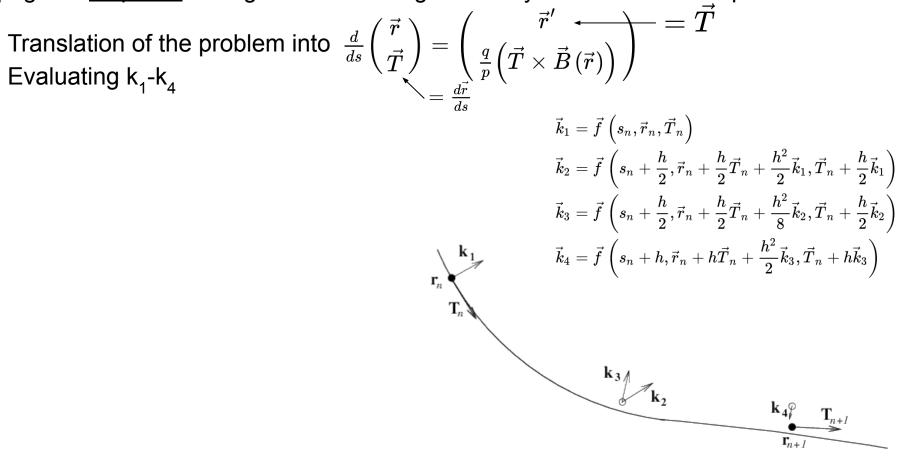
Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

1. Translation of the problem into
$$\frac{d}{ds} \begin{pmatrix} \vec{r} \\ \vec{T} \end{pmatrix} = \begin{pmatrix} \vec{r'} \\ \frac{q}{p} \begin{pmatrix} \vec{T} \times \vec{B} (\vec{r}) \end{pmatrix} \end{pmatrix} = T$$

A numerical approach should satisfy 2 things: <u>Accuracy</u> and <u>Speed</u>

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

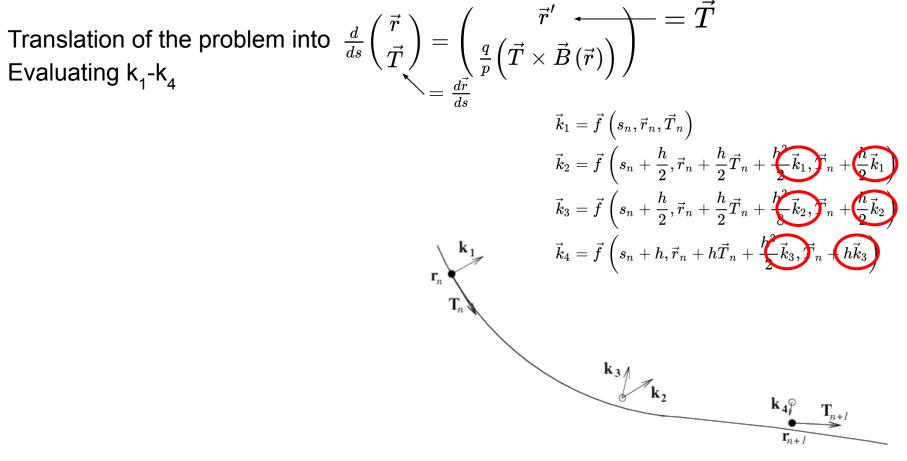
- 1.
- 2.



A numerical approach should satisfy 2 things: Accuracy and Speed

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

- 1.
- 2.



A numerical approach should satisfy 2 things: Accuracy and Speed

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

Propagates stepwise through detector using iteratively evaluated sub-steps

- 1. Translation of the problem into $\frac{d}{ds} \left(\frac{\vec{r}}{\vec{T}} \right) =$
- 2. Evaluating $k_1 k_4$
- 3. Updating the parameters

$$egin{split} ec{T}_{n+1} &= ec{T}_n + rac{h}{6} \Big(ec{k}_1 + 2ec{k}_2 + 2ec{k}_3 + ec{k}_4 \Big) \ ec{r}_{n+1} &= ec{r}_n + hec{T}_n + rac{h^2}{6} \Big(ec{k}_1 + ec{k}_2 + ec{k}_3 \Big) \end{split}$$

$$\begin{pmatrix} T \\ \frac{d\vec{r}}{ds} \\ \vec{r} \\ \frac{d\vec{r}}{ds} \\ \vec{k}_{1} = \vec{f} \left(s_{n}, \vec{r}_{n}, \vec{T}_{n} \right) \\ \vec{k}_{2} = \vec{f} \left(s_{n} + \frac{h}{2}, \vec{r}_{n} + \frac{h}{2}\vec{T}_{n} + \frac{h^{2}}{k_{1}}, \vec{r}_{n} + \frac{h}{2}\vec{k}_{1} \right) \\ \vec{k}_{3} = \vec{f} \left(s_{n} + \frac{h}{2}, \vec{r}_{n} + \frac{h}{2}\vec{T}_{n} + \frac{h^{2}}{k_{2}}, \vec{r}_{n} + \frac{h}{2}\vec{k}_{2} \right) \\ \vec{k}_{1} \\ \vec{k}_{4} = \vec{f} \left(s_{n} + h, \vec{r}_{n} + h\vec{T}_{n} + \frac{h^{2}}{2}\vec{k}_{3}, \vec{r}_{n} + h\vec{k}_{3} \right) \\ \vec{k}_{4} = \vec{f} \left(s_{n} + h, \vec{r}_{n} + h\vec{T}_{n} + \frac{h^{2}}{2}\vec{k}_{3}, \vec{r}_{n} + h\vec{k}_{3} \right) \\ \vec{k}_{4} = \vec{f} \left(s_{n} + h, \vec{r}_{n} + h\vec{T}_{n} + \frac{h^{2}}{2}\vec{k}_{3}, \vec{r}_{n} + h\vec{k}_{3} \right) \\ \vec{k}_{4} = \vec{f} \left(s_{n} + h, \vec{r}_{n} + h\vec{T}_{n} + \frac{h^{2}}{2}\vec{k}_{3}, \vec{r}_{n} + h\vec{k}_{3} \right) \\ \vec{k}_{4} = \vec{k}_{4} = \vec{k}_{4}$$

 $\vec{\mathbf{n}}$

A numerical approach should satisfy 2 things: Accuracy and Speed

Common choice: Runge-Kutta-Nyström integration of fourth order (RKN4)

- 1. Translation of the problem into $\frac{d}{ds} \left(\begin{array}{c} \vec{r} \\ \vec{T} \end{array} \right) =$
- 2. Evaluating $k_1 k_4$
- 3. Updating the parameters

$$\vec{T}_{n+1} = \vec{T}_n + \frac{h}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right)$$

$$\vec{r}_{n+1} = \vec{r}_n + h\vec{T}_n + \frac{h^2}{6} \left(\vec{k}_1 + \vec{k}_2 + \vec{k}_3 \right)$$

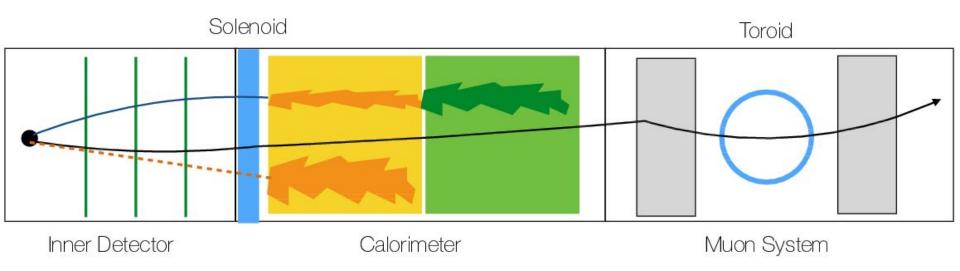
StraightLine solution

$$= \left(\begin{array}{c} \vec{r}' & \longrightarrow \\ \frac{q}{p} \left(\vec{T} \times \vec{B} \left(\vec{r} \right) \right) \right) \\ = \frac{d\vec{r}}{ds} \\ \vec{k}_1 = \vec{f} \left(s_n, \vec{r}_n, \vec{T}_n \right) \\ \vec{k}_2 = \vec{f} \left(s_n + \frac{h}{2}, \vec{r}_n + \frac{h}{2}\vec{T}_n + \frac{h^2}{4}\vec{k}_1, \vec{r}_n + \frac{h}{2}\vec{k}_1 \right) \\ \vec{k}_3 = \vec{f} \left(s_n + \frac{h}{2}, \vec{r}_n + \frac{h}{2}\vec{T}_n + \frac{h^2}{4}\vec{k}_2, \vec{r}_n + \frac{h}{2}\vec{k}_2 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{f} \left(s_n + h, \vec{r}_n + h\vec{T}_n + \frac{h^2}{4}\vec{k}_3, \vec{T}_n + h\vec{k}_3 \right) \\ \vec{k}_4 = \vec{k} \left(s_n + h, \vec{k}_n + h\vec{k}_n + h\vec{k}_n + h\vec{k}_n + h\vec{k}_n + h\vec{k}_n \right) \\ \vec{k}_4 = \vec{k} \left(s_n + h, \vec{k}_n + h\vec{k}_n + h$$

Propagation in matter

Beside the data from the inner detector we are also interested in data from Muon system This requires to extrapolate <u>through the calorimeter</u>

In the inner detector the momentum is constant along the propagation between surfaces Now we need to consider the energy loss along the propagation as well



Propagation in matter

Beside the data from the inner detector we are also interested in data from Muon system This requires to extrapolate <u>through the calorimeter</u>

In the inner detector the momentum is constant along the propagation between surfaces Now we need to consider the energy loss along the propagation as well

The energy loss is a composition of multiple effects:

$$g = \langle \frac{dE}{ds} \rangle_{Bethe-Bloch} + \langle \frac{dE}{ds} \rangle_{Bethe-Heitler} + \langle \frac{dE}{ds} \rangle_{Direct pair production + Photonuclear interaction}$$

Excitation & ionisation Bremsstrahlung Muon specific effects

Each effect depends on the current

- energy or velocity (directly)
- and the position (indirectly in material look-up)

$$ightarrow rac{dq/p}{ds} = -rac{qE}{p^3}g(q,p,ec{r})$$
 .

Propagation in matter

Beside the data from the inner detector we are also interested in data from Muon system This requires to extrapolate <u>through the calorimeter</u>

In the inner detector the momentum is constant along the propagation between surfaces Now we need to consider the energy loss along the propagation as well

The energy loss is a composition of multiple effects:

$$g = \langle \frac{dE}{ds} \rangle_{Bethe-Bloch} + \langle \frac{dE}{ds} \rangle_{Bethe-Heitler} + \langle \frac{dE}{ds} \rangle_{Direct pair production + Photonuclear interaction}$$

Excitation & ionisation Bremsstrahlung Muon specific effects

Each effect depends on the current

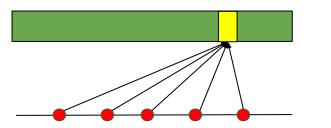
- energy or velocity (directly)
- and the position (indirectly in material look-up)

$$ightarrow rac{dq/p}{ds} = -rac{qE}{p^3}g(q,p,ec{r})$$

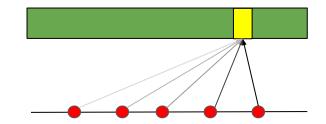
This cannot be treated discretised and is therefore treated by the RKN4

Propagation in time

Using a timestamp on each measurement allows to <u>filter measurements</u> and therewith <u>reduce the complexity</u> of the event



Equal likelihood for each track



Improved likelihood by new dimension

How does the time t change along the path s? $\frac{dt}{ds} = \frac{1}{\beta} = \frac{E}{p}$

Discrete material: This can be evaluated immediately (dt/ds = const) Continuous material: p in RKN4 formalism \rightarrow t propagated in the same way

 \rightarrow The total parameter set then will be: \vec{r}

en will be:
$$\vec{r} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
 $\vec{T} = \begin{pmatrix} T^x \\ T^y \\ T^z \\ \frac{E}{p} \end{pmatrix}$ @Acts: It's currently q/p

Covariance matrix in RKN4

Evaluating $J_{transport}$ in the StraightLine approach for the inner detector was simple It was also assumed that a single step is enough to reach a surface

Numerical integration has step-size dependent error

RKN4 requires usually multiple steps - the total transport Jacobian will then become

$$J_{transport} = \Pi_i J^i_{transport}$$

Covariance matrix in RKN4

Evaluating $J_{transport}$ in the StraightLine approach for the inner detector was simple It was also assumed that a single step is enough to reach a surface

Numerical integration has step-size dependent error

RKN4 requires usually multiple steps - the total transport Jacobian will then become

$$J_{transport} = \Pi_i J^i_{transport}$$

The individual components of $J^n_{transport}$ are build by deriving

$$egin{aligned} ec{r}_{n+1} &= ec{r}_n + rac{h}{6}ig(ec{k}_1 + 2ec{k}_2 + 2ec{k}_3 + ec{k}_4ig) \ ec{r}_{n+1} &= ec{r}_n + hec{T}_n + rac{h^2}{6}ig(ec{k}_1 + ec{k}_2 + ec{k}_3ig) \ \end{aligned}$$
 and the equations of motions $egin{aligned} rac{d^2ec{r}}{ds^2} &= rac{q}{p}ig(rac{dec{r}}{ds} imesec{B}(ec{r})ig) & rac{dq/p}{ds} = -rac{qE}{p^3}g(q,p,ec{r}) \ rac{dt}{ds} &= rac{1}{eta} = rac{E}{p} \end{aligned}$

Covariance matrix in RKN4

Evaluating $J_{transport}$ in the StraightLine approach for the inner detector was simple It was also assumed that a single step is enough to reach a surface

Numerical integration has step-size dependent error

RKN4 requires usually multiple steps - the total transport Jacobian will then become

$$J_{transport} = \Pi_i J^i_{transport}$$

The individual components of $J^n_{transport}$ are build by deriving

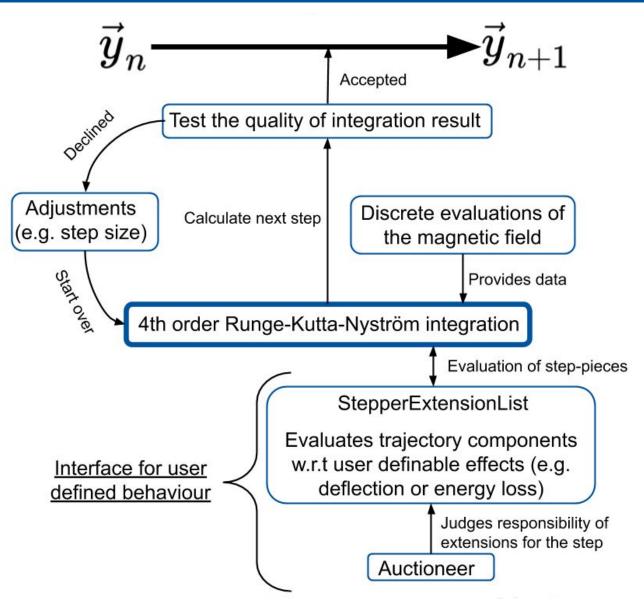
$$\vec{T}_{n+1} = \vec{T}_n + \frac{h}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right)$$

$$\vec{r}_{n+1} = \vec{r}_n + h\vec{T}_n + \frac{h^2}{6} \left(\vec{k}_1 + \vec{k}_2 + \vec{k}_3 \right)$$

and the equations of motions $\frac{d^2\vec{r}}{ds^2} = \frac{q}{p} \left(\frac{d\vec{r}}{ds} \times \vec{B}(\vec{r}) \right) \qquad \frac{dq/p}{ds} = -\frac{qE}{p^3} g(q, p, \vec{r})$
$$\frac{dt}{ds} = \frac{1}{\beta} = \frac{E}{p}$$

This is a huge matrix if written-out completely and computationally expensive!

Stepping in a bigger picture



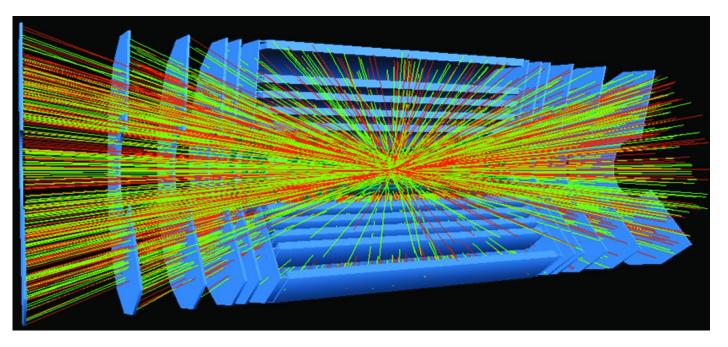
- Tracking is crucial to understand a HEP event
- The goal of Acts is to become here a "HEP standard"

- Measurement-particle association requires knowledge of particle properties at detector modules
- In simple cases can be approximated by StraightLine
- Requires numerical approaches in general Computationally heavy
- In Acts a single setup adapts its stepping based on its environment

Backup

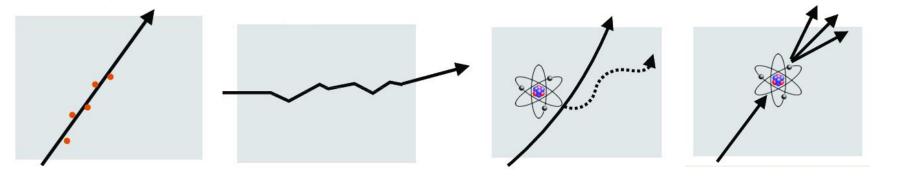
<u>Terminology</u>

- In a particle collision like it is performed by the LHC many particles are created
- Event: The combination of in- and outgoing particles
- <u>Measurement</u>: Signals/interactions of certain particles in certain detector parts
- ATLAS: 10⁵-10⁶ measurements per event in the tracker called innermost part
- <u>Track reconstruction/Tracking</u>: Multiple interactions of particles during their propagation through the detector allow the reconstruction of their trajectory



Interaction of particles and detectors

- Particles need to interact with the detector \rightarrow measurement
- otherwise they are not reconstructed in the event (e.g. neutrinos)
- Interactions categorised in



Ionisation Scattering Bremsstrahlung Hadronic interaction

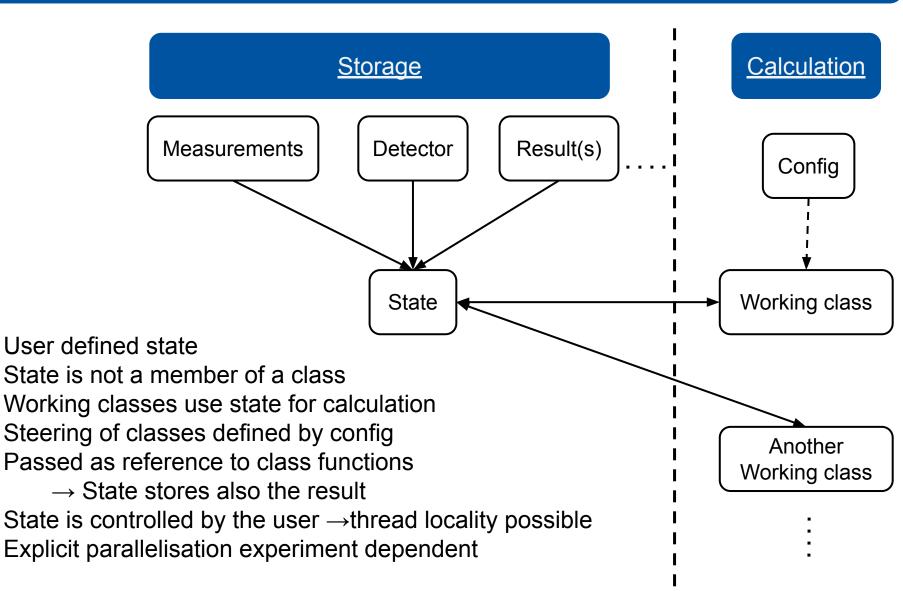
HEP-SPEC06 Results for SL7 x86_64 (gcc 4.8) Benchmark Environment

Operating system:	Scientific Linux 7 / CentOS 7 x86_64
Compiler package:	gcc-4.8.x (default compiler)
Compiler flags:	-O2 -pthread -fPIC -m32

Benchmark Results

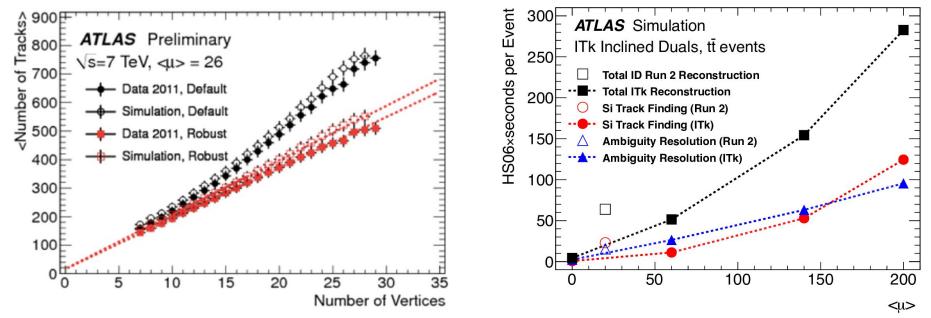
CPU	HS06	Clock speed (MHz)	L2+L3 cache size (grand total, KB)	Cores (runs)	Memory (GB)	Mainboard type	Site
Intel Xeon E5-2660v3	488	2600	5120+51200	40 HT on	256 (16x16 PC4-2133)	Huawei CH121 V3	(GridKa)
Intel Xeon E5-4669v4	1836	2200	22528+225280	176 (HT on)	512 (16x32 PC4-2400)	Dell FC830	(GridKa)
Intel Xeon E5-2699v4	987	2200	11264+112640	88 (HT on)	512 (16x32 PC4-2400)	Dell R730	(GridKa)
Intel Xeon E5-2620v4	305	2100	4096+40960	32	64 (8 modules)	Dell 082F9M	UKI-NORTHGRID-MAN-HEP
Intel Xeon Gold 6130	577	2100	32768+45056	32 (HT off)	192 (12 modules)	Dell 0K2TT6	UKI-NORTHGRID-MAN-HEP
Intel Xeon Gold 6130	717	2100	32768+45056	64 (HT on)	192 (12 modules)	Dell 0K2TT6	UKI-NORTHGRID-MAN-HEP

Software structure



Mission statement 2: Complexity

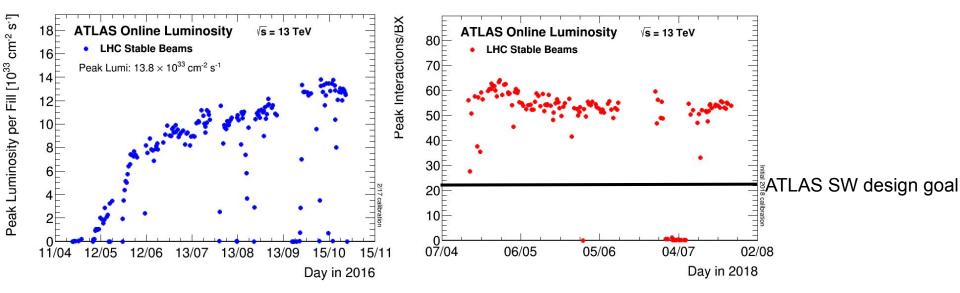
- 1. ATLAS uses combinatorial complexity algorithms to reconstruct tracks
- 2. In HL-LHC roughly 200 vertices per collision



- \rightarrow Increasing rate of fake-tracks due to combinatorics
 - ⇒More efficient fake candidate rejection
- \rightarrow Reconstruction time is going to explode
 - ⇒Better usage of computing resources to become faster

Mission statement 2: Complexity

To collect decent statistics for the physics programme at reasonable time-scales, LHC needs to run with high instantaneous luminosity ($\mathcal{L} \approx 10^{34} \text{ cm}^{-2}\text{s}^{-1}$)



Increasing the luminosity leads to more vertices & tracks in the same events

We're already running beyond the design specifications of the ATLAS tracking software

Athena

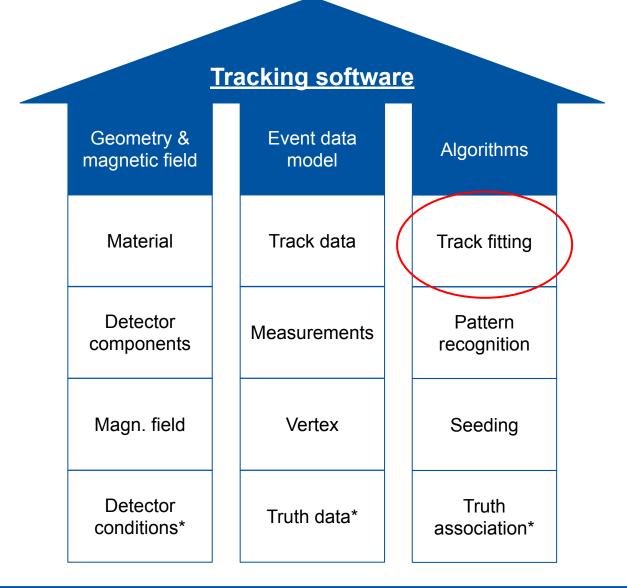
- Modular software framework
- Used in ATLAS for offline event reconstruction
- $\approx \mathcal{O}(6M)$ lines of code (= 200k DIN A4 pages)
- ≈ 20 years old (≡ 7 generations of PhD Students)

 \rightarrow Gigantic project grown over many generations of developers

= few have a total overview = many (undocumented) code fragments

- > Optimising legacy code provides problems, too:
 - Lost of knowledge
 - Outdated programming patterns
 - \circ No flexibility in the application and the order of execution \rightarrow Integral structures cannot be changed
- ➤ Most beneficial in the long run is rewriting the tracking code from scratch

Components of track reconstruction

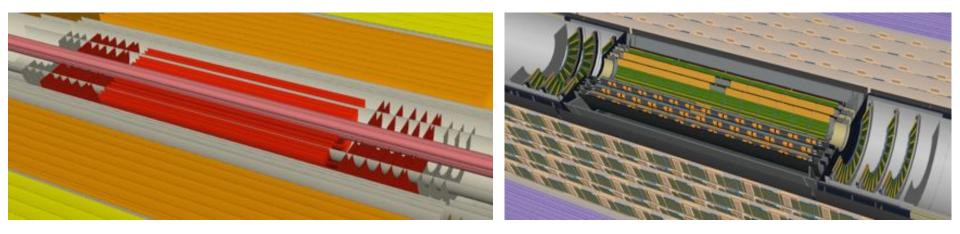


23.07.2019

- Track reconstruction consists of 2 different parts:
 - Collecting measurements that belong to a track (fast)
 - Fitting the track (precise, full geometry)
- These techniques rely on 2 different representations of a detector:

FastSim: Coarse granularity

Geant4: Fine granularity



ATLAS ttbar event in kSI2k sec:

FastSim: 7.4

Geant4: 1990

23.07.2019

Parallelised track reconstruction

- Runtime improvement by parallelisation
- Sharing detector & splitting event into segments

 \rightarrow Data locality!

Best splitting strategy?

 \rightarrow Parallel processing of events

Minimal communication

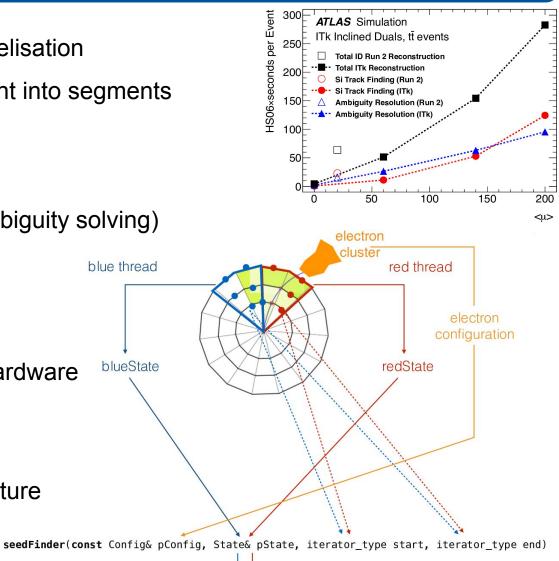
Detector dependent

 \rightarrow Depends on the experiment

 \rightarrow ACTS provides the infrastructure

• Results need to be merged (ambiguity solving)

Optimised for computing hardware



SeedContainer

23.07.2019

 \bigcirc

Ο

Ο

Propagation in matter

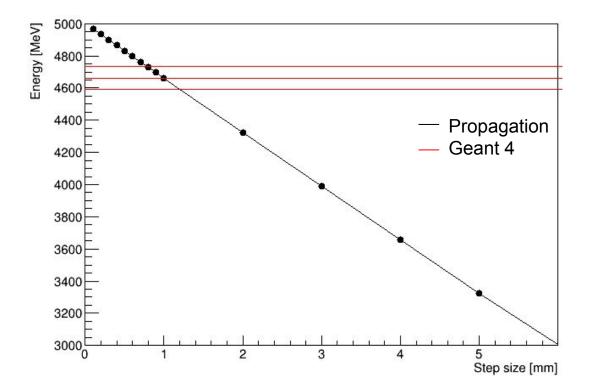
$$g = \langle \frac{dE}{ds} \rangle_{Bethe-Bloch} + \langle \frac{dE}{ds} \rangle_{Bethe-Heitler} + \langle \frac{dE}{ds} \rangle_{Direct pair production + Photonuclear interaction}$$

Excitation & ionisation

Bremsstrahlung

Muon specific effects

 $rac{dq/p}{ds} = -rac{qE}{p^3}g(q,p,ec{r})$

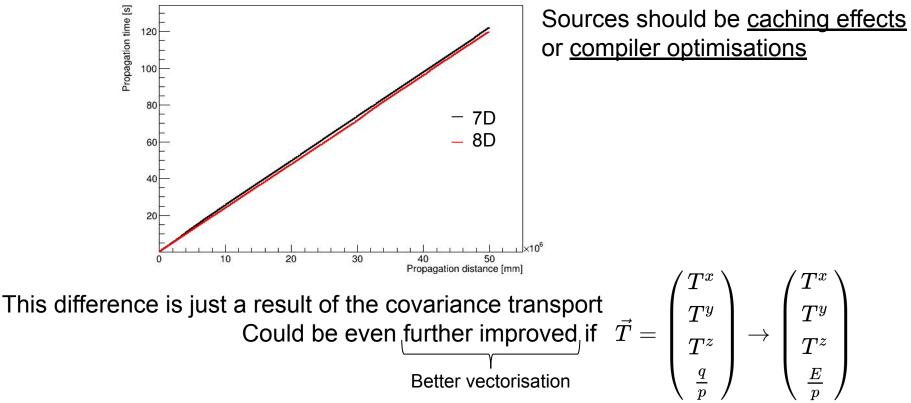


Time needed for the time

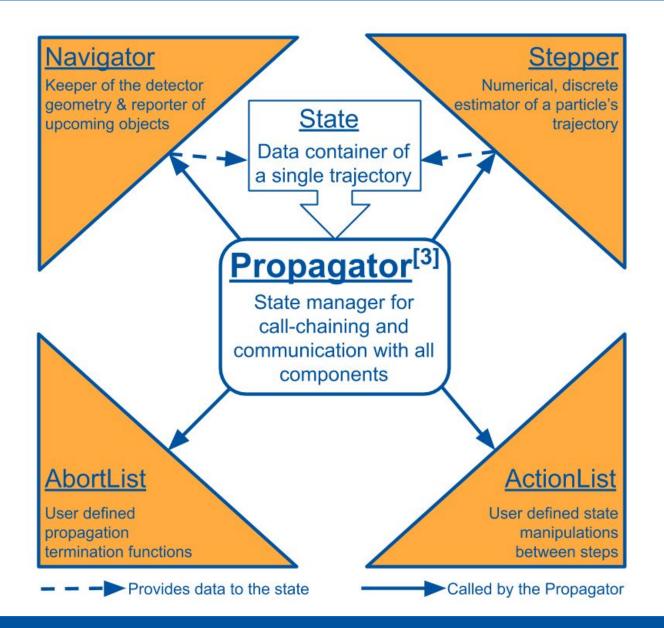
Propagating the time as parameter requires additional calculations: This increases the

- 1. parameter vector by 1 component (from 7 to 8)
- 2. transport Jacobian by 15 components (from 7x7 to 8x8)

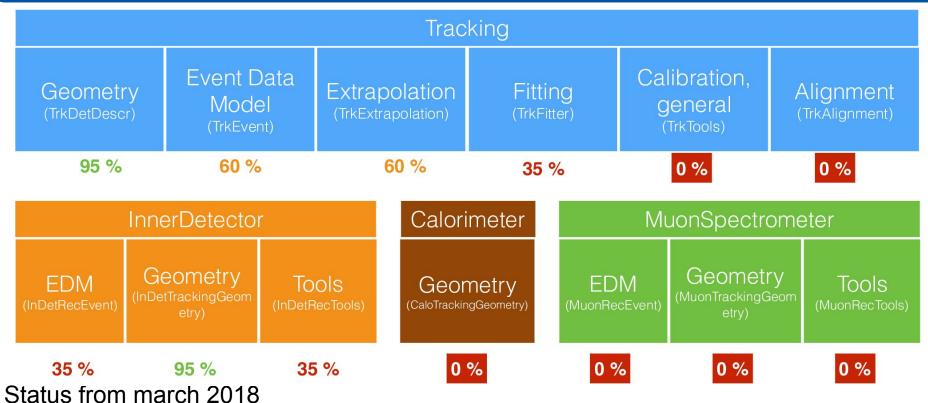
but the resulting time for the propagation improves



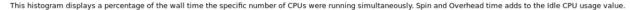
Propagation in a bigger picture

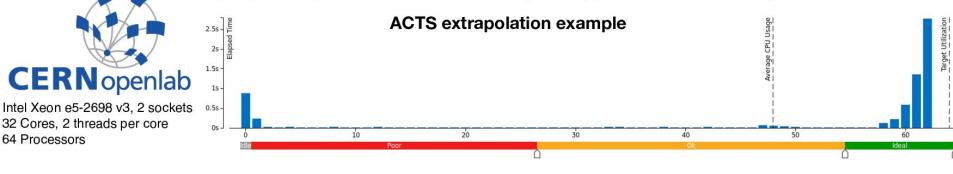


Status of ACTS



CPU Usage Histogram





23.07.2019

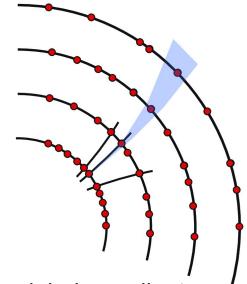
Parameter transformation

Starting point is a collection of measurements

 \rightarrow Parameters in local coordinates \vec{y}_0^{local}

TODO: mit folie davor kombinieren

Parametrisation bound to surface



- > Extension of trajectory in local coordinates easier in global coordinates

$$\begin{array}{ll} \text{Requires transformation} & \vec{y}_0^{global} = J_{l2g} \cdot \vec{y}_0^{local} \\ & & \downarrow \\ & \downarrow \\ & \text{Projection Jacobian from local} \\ & \text{to global coordinates} & J_{l2g} = \frac{\partial \vec{y}_0^{global}}{\partial \vec{y}_0^{local}} \end{array}$$

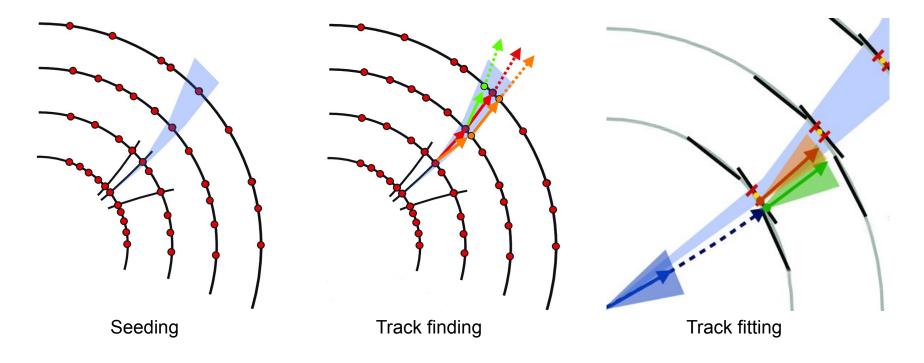
The transformation depends on the shape of the surface

but exists also in the other direction: $J_{g2l} \cdot J_{l2g} = 1$

Progressive tracking - The Kalman filter

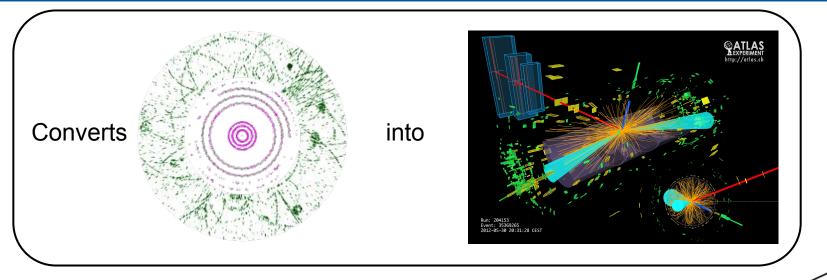
Association is performed by

- 1. using an initial guess of the particle properties (= seed)
- 2. extending the trajectory
- 3. searching for corresponding measurements along the way
- 4. update the guess with the new data



Introduction

Mission statement: Tracking

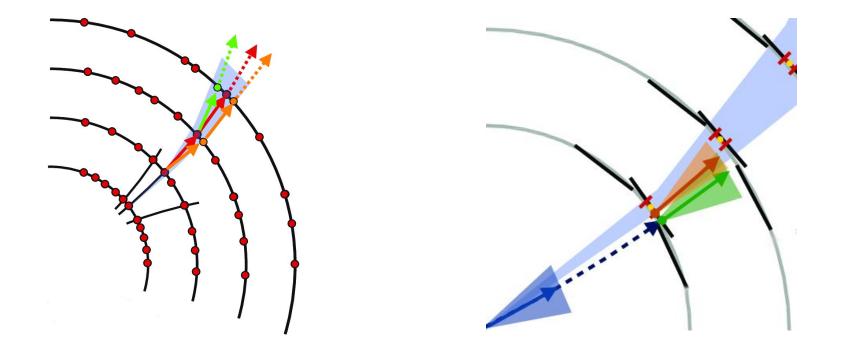


- Tracking converts measurements from the tracking detector into tracks of particles
- Tracks allow to estimate particle properties such as momentum and of

Tracking is an inevitable step of event reconstruction

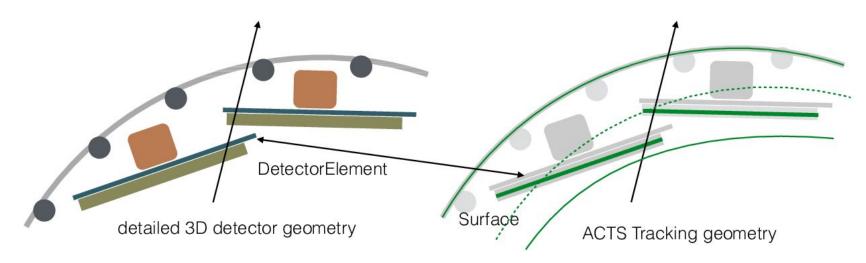
... but also the computationally most expensive (set

- Track reconstruction consists of 2 different parts:
 - Collecting measurements that belong to a track (fast)
 - Fitting the track (precise, full geometry)



Detector description in FastSim

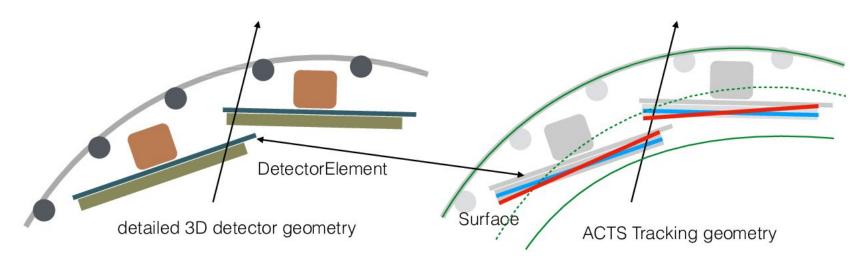
- In Simulation the detector is represented by simple surfaces
- Each geometric element is assumed to be a homogenic body
- Interactions of the traversing particles only happens at the surfaces



- Drawback of the simplified representation:
 - Particles could be propagated beyond the a surface and miss the interaction
 - Actual particle's path length through the detector element is totally neglected
 - Surface alignment can be varied and tuned

Detector description in FastSim

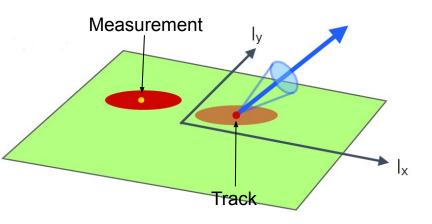
- In Simulation the detector is represented by simple surfaces
- Each geometric element is assumed to be a homogenic body
- Interactions of the traversing particles only happens at the surfaces

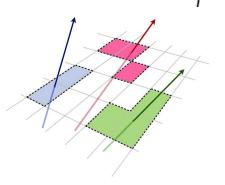


- Drawback of the simplified representation:
 - Particles could be propagated beyond the a surface and miss the interaction
 - Actual particle's path length through the detector element is totally neglected
 - Surface alignment can be varied and tuned

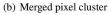
Event representation and dense environments

- Event = many measurements
- A measurements is expressed in local coordinates of the surface
- Track reconstrunction requires coordinate transformations →Lot's of linear algebra
- Additional level of complexity in dense environments:
- Cluster formation
 - Multiple tracks per cluster
 - \rightarrow Ambiguity solving
 - Complexity grows with the number of tracks





(a) Single-particle pixel clusters



track