

DATA ANALYSIS IN CRESST IMPRS Young Scientists Workshop July 2019

Dominik Fuchs

Technical University of Munich Max Planck Institute for Physics

July 24, 2019

Dominik Fuchs

DATA ANALYSIS IN CRESST

Outline

1 Dark Matter

- 2 The CRESST Experiment
- 3 Data Analysis
- 4 Summary

Dominik Fuchs

DATA ANALYSIS IN CRESST

Evidence for Dark Matter

CMB Image:ESA

Evidence for Dark Matter

CMB Image:ESA

Evidence for Dark Matter

Dominik Fuchs

DATA ANALYSIS IN CRESST

WIMPs

Weakly Interacting Massive Particles

- Interactions with SM particles only on the weak scale or below
- Stable on cosmological time scale
- \blacktriangleright Lee-Weinberg-bound excludes WIMP masses below \sim 3 GeV/c²
- Sub-GeV masses: light dark matter (asymmetric dark matter models)
- Asymmetric dark matter models are not bound to the Lee-Weinberg limit
- ▶ Predictions of masses in the range: [0.1-10] GeV/c²

Dominik Fuchs

DATA ANALYSIS IN CRESST

Dark Matter Halo Model

Spherical halo of DM around center of Milky Way
 DM particles thermalized → Maxwellian velocity distribution
 Local DM density: ρ_{DM} = 0.3 GeV/cm³
 Rotation of Milky Way → WIMP Wind

Outline

1 Dark Matter

2 The CRESST Experiment

3 Data Analysis

4 Summary

Dominik Fuchs

DATA ANALYSIS IN CRESST

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

~ 3600 m.w.e. deep
µs: ~ 3 · 10⁻⁸ /(s cm²)
γs: ~ 0.73 /(s cm²)
neutrons: 4 · 10⁻⁶ n/(s cm²)

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~\rm{mK}$

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

~ 3600 m.w.e. deep
 μs: ~ 3 · 10⁻⁸ /(s cm²)
 γs: ~ 0.73 /(s cm²)
 neutrons: 4 · 10⁻⁶ n/(s cm²)

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~\rm{mK}$

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

► ~ 3600 m.w.e. deep
\blacktriangleright µs: $\sim 3 \cdot 10^{-8}$ /(s cm 2)
\blacktriangleright ys: \sim 0.73 /(s cm ²)
▶ neutrons: $4 \cdot 10^{-6}$ n/(s cm ²

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~\rm{mK}$

Dominik Fuchs

DATA ANALYSIS IN CRESST

CRESST Setup

Shielding:

- polyethylene
- muon veto system
- lead
- copper
- polyethylene

DATA ANALYSIS IN CRESST

7

Dominik Fuchs

DATA ANALYSIS IN CRESST

Dominik Fuchs

DATA ANALYSIS IN CRESST

Crystals:

- scintillating 24g
 CaWO₄ crystals
 as target
- cryogenic detector
- W-TES sensor

► E_{threshold} ≤ 100eV (nuclear recoils)

Crystals:

- scintillating 24g
 CaWO₄ crystals
 as target
- cryogenic detector
- W-TES sensor

E_{threshold} ≤ 100eV (nuclear recoils)

Particle discrimination:

Light detector Light Yield characteristic of type of particle

DATA ANALYSIS IN CRESST

Crystals:

- scintillating 24g
 CaWO₄ crystals
 as target
- cryogenic detector
- W-TES sensor

E_{threshold} ≤ 100eV (nuclear recoils)

Particle discrimination: Light detector Light Yield characteristic of type of particle **Background rejection:** Housing: reflecting and scintillating foil Instrumented holding system \rightarrow Veto surface related Background

Outline

- **1 Dark Matter**
- 2 The CRESST Experiment
- 3 Data Analysis
- 4 Summary

Dominik Fuchs

DATA ANALYSIS IN CRESST

Continuous DAQ + Optimum Filter

- Dead-time free DAQ: detector output is continuously recorded with a sampling rate of 25 kHz
- Create Template Power Spectrum and Noise Power Spectrum

$$y_F(t) = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H(\omega)\widehat{s}(\omega)e^{i\omega t} d\omega$$

Optimum Filter

- Maximize Signal-to-Noise ratio in frequency space
- ► Transfer function: $H(\omega) = K \frac{\hat{s^*}(\omega)}{N(\omega)} e^{-i\omega\tau_M}$

Dominik Fuchs

DATA ANALYSIS IN CRESST

Optimum Filter

- Maximize Signal-to-Noise ratio in frequency space
- Transfer function: $H(\omega) = K \frac{\hat{s}^*(\omega)}{N(\omega)} e^{-i\omega\tau_M}$

Dominik Fuchs

DATA ANALYSIS IN CRESST

Optimum Filter

- Maximize Signal-to-Noise ratio in frequency space
- Transfer function: $H(\omega) = K \frac{\hat{s}^*(\omega)}{N(\omega)} e^{-i\omega\tau_M}$

Template Fits

- Extract selection of 'good' pulses
- Average selection to create template pulse
- Fit template pulse to full list of pulses
- ► Fit results → further quality cuts on pulse shape
- Repeat with higher quality template

Empty baseline

Simulated pulse

Dominik Fuchs

Calibration

Light Yield: LY = $E_{\rm L}/E_{\rm Ph}$

Band Fits QF

Dominik Fuchs

Light Yield Plot + ROI

Cosmogenic activation lines: 179 Ta + e⁻ \rightarrow 179 Hf + ν_e

Light Yield Plot + ROI

Region of Interest: From mean of oxygen band down to 99.5% lower boundary of Tungsten band

Yellin maximum gap method

S. Yellin, "Finding an upper limit in the presence of an unknown background"

- Simulate spectra for different masses
- Use maximum gap between two events to determine limits on cross-section
- For each mass calculate cross-section which excludes observed data with certain confidence level
- Extend to Yellin optimum interval method

Dark Matter Limits

Dominik Fuchs

DATA ANALYSIS IN CRESST

Outline

- **1 Dark Matter**
- 2 The CRESST Experiment
- 3 Data Analysis
- 4 Summary

Dominik Fuchs

Build and run Optimum Filter on raw data stream

- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

Build and run Optimum Filter on raw data stream

- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

- Build and run Optimum Filter on raw data stream
- Trigger filtered stream
- Perform cuts and build template
- Fit pulses
- Perform further cuts (and fit again)
- Produce Light Yield plot
- Perform calibration and band fits
- Select data in ROI and create spectrum
- Compare data spectrum to simulated spectrum
 ⇒ Calculate Limits on Dark Matter

Thank you for your attention!