Low-Background Experiments

The GERDA Experiment in a nutshell

Felix Fischer July 26th, 2019

IMPRS Young Scientist Workshop, Ringberg Castle

Normal beta decay is strongly suppressed for some isotopes

ightarrow Double beta decay, 2uetaeta-Decay

¹ Fig. 1, http://www.cobra-experiment.org/double_beta_decay ² Fig. 2, arXiv:1601.07512

² Fig. 2, arXiv:1601.07512

Normal beta decay is strongly suppressed for some isotopes

ightarrow Double beta decay, 2uetaeta-Decay

Discovery of $0
u\beta\beta$ -decay would

- demonstrate lepton number violation
- $\circ~$ give information about the nature of neutrinos
 - ightarrow Majorana or Dirac particle
- give information about absolute neutrino mass

³ Fig. 3, AJ Zsigmond, INPA, Dec 2017

⁴ M. Agostini, ICHEP 2018 – July 2018

Discovery of 0
uetaeta-decay would

- demonstrate lepton number violation
- $\circ~$ give information about the nature of neutrinos
 - ightarrow Majorana or Dirac particle
- give information about absolute neutrino mass

The experimental limit on the 0 $\nu\beta\beta$ -decay half-life is very long: $> 0.9\cdot 10^{26}$ years (for 76 Ge)⁴

Known double beta decay isotopes: ⁴⁸Ca, ⁷⁶Ge, ⁷⁸Kr, ⁸²Se, ⁸⁶Kr, ⁹⁶Zr, ¹⁰⁰Mo, ¹³⁶Xe, ¹³⁰Te, ...

³ Fig. 3, AJ Zsigmond, INPA, Dec 2017

⁴ M. Agostini, ICHEP 2018 – July 2018

But why $0\nu\beta\beta$ -decay?

What we know about neutrinos:

- 2nd most abundant known particles in the observable universe
- They love to oscillate
- Some neutrinos must have mass

⁵Fig. 4, http://faculty.wcas.northwestern.edu/ (11/2018)

⁰ Fig. 5, minutephysics, YouTube (11/2018)

But why $0\nu\beta\beta$ -decay?

What we know about neutrinos:

- 2nd most abundant known particles in the observable universe
- They love to oscillate
- Some neutrinos must have mass
- They are generators for Nobel prizes

^DFig. 4, http://faculty.wcas.northwestern.edu/ (11/2018) ⁶Fig. 5, minutephysics, YouTube (11/2018)

But why $0\nu\beta\beta$ -decay?

What we **know** about neutrinos:

- 2nd most abundant known particles in the observable universe
- They love to oscillate
- Some neutrinos must have mass
- They are generators for Nobel prizes

⁵Fig. 4, http://faculty.wcas.northwestern.edu/ (11/2018) ⁶Fig. 5, minutephysics, YouTube (11/2018) What we **don't know** about neutrinos:

- Does the neutrino relate to matter-antimatter asymmetry?
- Absolute neutrino mass scale?
- Neutrino mass hierarchy?
- Why is their mass tiny?

o ...

Neutrinos are SUPER weird

But whats the problem with $0\nu\beta\beta$ -decay?

The insane half-life of $> 0.9 \cdot 10^{26}$ years..

⁷Fig. 6, www.joiyon.co.uk, (11/2018)

Sensitivity on half-life:

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{m \cdot t}{BI \cdot \Delta E}}$$
 with $\begin{cases} m \cdot t &, \text{exposure} \\ BI &, \text{background index} \\ \Delta E &, \text{energy resolution} \end{cases}$

Sensitivity on half-life:

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{m \cdot t}{BI \cdot \Delta E}}$$
 with $\begin{cases} m \cdot t &, \text{ exposure} \\ BI &, \text{ background index} \\ \Delta E &, \text{ energy resolution} \end{cases}$

 $\Delta E \quad
ightarrow \,$ is limited by the detectors

Sensitivity on half-life:

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{m \cdot t}{BI \cdot \Delta E}}$$
 with $\begin{cases} m \cdot t &, \text{ exposure} \\ BI &, \text{ background index} \\ \Delta E &, \text{ energy resolution} \end{cases}$

 $\begin{array}{rcl} \Delta E & \rightarrow & \text{is limited by the detectors} \\ m \cdot t & \rightarrow & \text{is limited by funding} \end{array}$

Sensitivity on half-life:

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{m \cdot t}{BI \cdot \Delta E}}$$
 with $\begin{cases} m \cdot t &, \text{exposure} \\ BI &, \text{background index} \\ \Delta E &, \text{energy resolution} \end{cases}$

$$\begin{array}{rcl} \Delta E & \rightarrow & \text{is limited by the detectors} \\ m \cdot t & \rightarrow & \text{is limited by funding} \\ Bl & \rightarrow & \text{can be improved!} \end{array}$$

Germanium Detector Array (GERDA)

$$^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^-$$
 with $Q_{\beta\beta} = 2039$ keV

Germanium Detector Array (GERDA)

$$^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^-$$
 with $Q_{\beta\beta} = 2039$ keV

- $\circ~$ Energy resolution $\Delta E_{Q_{\beta\beta}} < 0.1\%$
- \rightarrow Next step: increase exposure $m \cdot t$

Germanium Detector Array (GERDA)

$$^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^-$$
 with $Q_{\beta\beta} = 2039$ keV

- $\circ~$ Energy resolution $\Delta {\it E}_{Q_{\beta\beta}} < 0.1\%$
- \rightarrow Next step: increase exposure $m \cdot t$

• 40 detectors (35.6 kg enriched Germanium)

⁸ Fig. 8-11, Eur. Phys. J. C 78 (2018) 388

The GERDA-Experiment

Then reduce/reject the background:

The GERDA-Experiment

Then reduce/reject the background:

The GERDA-Experiment

⁹ Fig. 12, Paolo Zavarise, 1st June 2012, VULCANO Workshop

Background before analysis cuts

Background at $Q_{\beta\beta}$: α from ²¹⁰Po, γ from ²⁰⁸Ti/²¹⁴Bi and β from ⁴²K

¹¹Fig. 14, M. Agostini, ICHEP 2018 – July 2018

The low background challenge

See following talks for details!

¹²Fig. 15, AJ Zsigmond, INPA, Dec 2017

The low background challenge

See following talks for details!

¹²Fig. 15, AJ Zsigmond, INPA, Dec 2017

Active background suppression - PSD LAr veto

Background in the ROI:

$$BI \approx 5.6 \cdot 10^{-4} rac{\text{cts}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}$$

¹³Fig. 16, M. Agostini, ICHEP 2018 – July 2018

Projects at the MPP

Spoiler alarm!

Projects at the MPP

Spoiler alarm!

Projects at the MPP

Implication for neutrino physics

Implication for neutrino physics

 $◦ T_{1/2}^{0\nu} > 0.9 · 10^{26} yr (90\% C.L.)$ → $m_{\beta\beta} < (0.11 - 0.25) eV$

 Next target: inverted ordering band

¹⁴Fig. 17, M. Agostini, ICHEP 2018 – July 2018

Outlook: LEGEND

MAJORANA and GERDA merge to form the LEGEND collaboration

- Increase exposure $m \cdot t$ in steps:
 - 1. LEGEND-200 with 200 kg of enriched germanium
 - Add detectors to existing GERDA environment
 - In preparation to reach $\overline{T}_{1/2}^{0\nu}$ above 10²⁷ yr (starting in 2021)

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

¹²AIP Conference Proceedings 1894, 020027 (2017); https://doi.org/10.1063/1.5007652

Outlook: LEGEND

MAJORANA and GERDA merge to form the LEGEND collaboration

- Increase exposure $m \cdot t$ in steps:
 - 1. LEGEND-200 with 200 kg of enriched germanium
 - Add detectors to existing GERDA environment
 - In preparation to reach $T_{1/2}^{0\nu}$ above 10²⁷ yr (starting in 2021)
 - 2. LEGEND-1000 with 1 ton of enriched germanium

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

¹²AIP Conference Proceedings 1894, 020027 (2017); https://doi.org/10.1063/1.5007652

Outlook: LEGEND

MAJORANA and GERDA merge to form the LEGEND collaboration

- Increase exposure $m \cdot t$ in steps:
 - 1. LEGEND-200 with 200 kg of enriched germanium
 - Add detectors to existing GERDA environment
 - \circ In preparation to reach $T_{1/2}^{0\nu}$ above 10²⁷ yr (starting in 2021)
 - 2. LEGEND-1000 with 1 ton of enriched germanium
- Decrease the background index BI¹²
 - Bigger detectors in order to reduce the number of cables and supports
 - Deep learning for event selection
 - Transparent, scintillating holding structures made of PEN

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

¹²AIP Conference Proceedings 1894, 020027 (2017); https://doi.org/10.1063/1.5007652

Backup

Why Germanium?

- $\checkmark\,$ Source can be used as a detector
 - ightarrow High signal detection efficiency
- ✓ Detector material is very pure
 - ightarrow Very low intrinsic internal background
- \checkmark Very good energy resolution
 - ightarrow Background due to 0uetaeta-decay is negligible
- \checkmark Pulse shape discrimination is possible
 - ightarrow Powerful tool to identify background
- ✓ Considerable experience
 - ightarrow Industrial production, improvements possible
- X Natural abundance is just 7.8
 - \rightarrow Enrichment necessary
- X Individual detector mass 1 kg
 - ightarrow Ton scale needs around 1000 detectors

The Ge Detectors

HPGe detector signals:

- signal induced by drift of electron-hole clusters
- ➤ time-projection chamber
- identification of events with multiple energy depositions
- identification of events on the surface

Signal/Background Discrimination!

M. Agostini (TU Munich)

Energy Scale

LAr scintillation anti-coincidence

