Soft approximations and possible applications to $g-2$

ANNA RINAUDO
MUNICH, 15.07.2019

Anomalous magnetic moment of leptons

Differences between experimental value and theoretical prediction

New physics??
Expected effects $\sim \frac{m_{l}^{2}}{\Lambda^{2}}$

Anomalous magnetic moment of leptons

- Known with a precision of sub-part per billions
- Less influenced by new physics effects
- Value of the finestructure constant α

Anomalous magnetic moment of leptons

- Known with a precision of sub-part per billions
- Less influenced by new physics effects
- Value of the finestructure constant α

Now α can be measured very precisely with atomic physics experiments

Anomalous magnetic moment of leptons

- Known with a precision of sub part per million
- More influenced by new physics effects
- Nowadays $\sim 3,5 \sigma$ between
experimental value and theoretical predictions

Anomalous magnetic moment of leptons

- Known with a precision of sub part per million
μ
- More influenced by new physics effects
- Nowadays $\sim 3,5 \sigma$ between experimental value and theoretical predictions

Anomalous magnetic moment of leptons

- The most influenced by new physics effects
τ
- Very short lifetime: difficult to measure

Anomalous magnetic moment

Exact finite order calculation

Anomalous magnetic moment

Exact finite order cciculation

Soft Approximations

Anomalous magnetic moment

Exacf finite order

Soft Approximations

 cciculationWhy?

Exponentiation
Gauge-set cancellation

Gauge sets

P. Cvitanovic, "QFT and its discontents, a blog," 2018.

Soft limit: how does it work?

$$
=(-\mathrm{ie}) \Gamma^{\mu}=-\mathrm{e}^{3} \mu^{3 \epsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\nu}(p / 2-\not / k+m) \gamma^{\mu}(p / 1-\not / k+m) \gamma_{\nu}}{\left[\left(p_{1}-k\right)^{2}-m^{2}+i \eta\right]\left[\left(p_{2}-k\right)^{2}-m^{2}+i \eta\right]\left[k^{2}+i \eta\right]}
$$

$$
k \rightarrow 0
$$

$$
\begin{aligned}
\Gamma^{\mu} \approx \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{p_{1} \cdot p_{2} \gamma^{\mu}}{p_{1} \cdot k p_{2} \cdot k k^{2}} & +\int \frac{d^{d} k}{(2 \pi)^{d}}\left[\frac{p_{1} \cdot p_{2} \gamma^{\mu}}{2\left(p_{2} \cdot k\right)^{2} p_{1} \cdot k}-\frac{\gamma^{\mu}}{p_{2} \cdot k k^{2}}+\frac{\not k p / 1 \gamma^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}\right]+ \\
& +\int \frac{d^{d} k}{(2 \pi)^{d}}\left[\frac{p_{1} \cdot p_{2} \gamma^{\mu}}{2\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k}-\frac{\gamma^{\mu}}{p_{1} \cdot k k^{2}}+\frac{\gamma^{\mu} p / 2 \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}\right]
\end{aligned}
$$

Eikonal approximation

$K_{i}=\sum_{m=i}^{n} k_{m}$.
Eikonal approximation and Dirac Equation

$$
\mathcal{M}^{\mu_{1} \cdots \mu_{n}}\left(p, k_{i}\right)=\mathcal{M}_{0}(p) \frac{p^{\mu_{1} \cdots p^{\mu_{n}}}}{\left(p \cdot K_{1}\right) \cdots\left(p \cdot K_{n}\right)}
$$

- Physical quantity

Sum over permutations of the emitted photons

$$
E^{\mu_{1} \ldots \mu_{n}}\left(p, k_{i}\right)=\frac{1}{n!} p^{\mu_{1}} \ldots p^{\mu_{n}} \sum_{\pi} \frac{1}{p \cdot k_{\pi_{1}}} \frac{1}{p \cdot\left(k_{\pi_{1}}+k_{\pi_{2}}\right)} \cdots \frac{1}{p \cdot\left(k_{\pi_{1}}+\ldots+k_{\pi_{n}}\right)}
$$

- Eikonal Identity $\quad \sum_{\pi}\left[\frac{1}{p \cdot k_{\pi(1)}} \cdots \frac{1}{p \cdot\left(\sum_{i=1}^{n} k_{\pi(i)}\right)}\right]=\prod_{i=1}^{n} \frac{1}{p \cdot k_{i}}$

$$
E^{\mu_{1} \ldots \mu_{n}}\left(p, k_{i}\right)=\prod_{i} \frac{p^{\mu_{i}}}{p \cdot k_{i}}
$$

1. Eikonal Feynman rule

Factorization

2. Define a subset of Feynman diagrams generating the full eikonal amplitude

Exponentiation

$$
\mathcal{M}=\mathcal{M}_{0} \exp \left[\sum G_{c}\right]
$$

Next-to-Eikonal approximation

- Spin dependent
- Remainder term

Exponentiation

$$
\mathcal{M}=\mathcal{M}_{0} \exp \left[\mathcal{M}_{\mathrm{Eik}}+\mathcal{M}_{\mathrm{NE}}\right]\left(1+\mathcal{M}_{r}\right)+O(\mathrm{NNE})
$$

Form factors

$$
\bar{u}\left(p_{2}\right) \Gamma^{\mu} u\left(p_{1}\right)=\bar{u}\left(p_{2}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} \sigma^{\mu \nu} \frac{q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u\left(p_{1}\right)
$$

$$
a \equiv \frac{g-2}{2}=F_{2}(0)
$$

$$
\left.a\right|_{\text {one loop }}=\frac{\alpha}{2 \pi}
$$

Peskin, M. E. (2018). An introduction to quantum field theory. CRC Press. Schwinger, J. (1948). On quantum-electrodynamics and the magnetic
moment of the electron. Physical Review, 73(4), 416.

Form factors

$$
\bar{u}\left(p_{2}\right) \Gamma^{\mu} u\left(p_{1}\right)=\bar{u}\left(p_{2}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\mu}+\mathrm{i} \sigma^{\mu \nu} \frac{q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u\left(p_{1}\right)
$$

$$
a \equiv \frac{g-2}{2}=F_{2}(0)
$$

$$
\left.a\right|_{\text {one loop }}=\frac{\alpha}{2 \pi}
$$

Where does it come from?

Analytical one-loop calculation

$I=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[\left(p_{1}-k\right)^{2}-m^{2}+i \eta\right]\left[\left(p_{2}-k\right)^{2}-m^{2}+i \eta\right]\left[k^{2}+i \eta\right]}$
$C^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{\left[\left(p_{1}-k\right)^{2}-m^{2}+i \eta\right]\left[\left(p_{2}-k\right)^{2}-m^{2}+i \eta\right]\left[k^{2}+i \eta\right]}$
$C^{\mu \nu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu} k^{\nu}}{\left[\left(p_{1}-k\right)^{2}-m^{2}+i \eta\right]\left[\left(p_{2}-k\right)^{2}-m^{2}+i \eta\right]\left[k^{2}+i \eta\right]}$

Which of these
contribute to $F_{2}(0)$?

No

contribution

Only term with one or two powers of k at numerator give contributions to the anomaly

Eikonal approximation does not suffice to obtain information about $g-2$

One loop in the soft limit

What happens if I put the masses?

One loop in the soft limit

$\left.\Gamma^{\mu}\right|_{\text {one loop }}=\left.\Gamma^{\mu}\right|_{\text {Eik }}+\left.\Gamma^{\mu}\right|_{\mathrm{NE}}+\left.\Gamma^{\mu}\right|_{\mathrm{NNE}}+O\left(\mathrm{~N}^{3} \mathrm{E}\right)$

Only terms with at least one power of k^{μ} at numerator contribute at the anomalous magnetic moment

I compute the contribution from the NE and the NNE terms

Next-to-Eikonal order

$$
\left.\Gamma^{\mu}\right|_{\mathrm{NE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
$$

Next-to-Eikonal order

$$
\left.\Gamma^{\mu}\right|_{\mathrm{NE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
$$

I have to calculate

$$
I^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}=\frac{\mathrm{i}}{(4 \pi)^{2}} \frac{p_{1}^{\mu}+p_{2}^{\mu}}{2 m^{2}}
$$

Next-to-Eikonal order

$$
\left.\Gamma^{\mu}\right|_{\mathrm{NE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
$$

I have to calculate

$$
I^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}=\frac{\mathrm{i}}{(4 \pi)^{2}} \frac{p_{1}^{\mu}+p_{2}^{\mu}}{2 m^{2}}
$$

$$
\left.\bar{u}\left(p_{2}\right) \Gamma^{\mu}\right|_{\mathrm{NE}} u\left(p_{1}\right)=(\cdots)+\bar{u}\left(p_{2}\right)\left[-\mathrm{i} \frac{\alpha}{4 \pi} \frac{\sigma^{\mu \nu} q_{\nu}}{m}\right] u\left(p_{1}\right)
$$

Next-to-Eikonal order

$$
\left.\Gamma^{\mu}\right|_{\mathrm{NE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
$$

I have to calculate

$$
I^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}=\frac{\mathrm{i}}{(4 \pi)^{2}} \frac{p_{1}^{\mu}+p_{2}^{\mu}}{2 m^{2}}
$$

$$
\left.\bar{u}\left(p_{2}\right) \Gamma^{\mu}\right|_{\mathrm{NE}} u\left(p_{1}\right)=(\cdots)+\bar{u}\left(p_{2}\right)\left[-\mathrm{i} \frac{\alpha}{4 \pi} \frac{\sigma^{\mu \nu} q_{\nu}}{m}\right] u\left(p_{1}\right)
$$

$$
\left.F_{2}(0)\right|_{\mathrm{NE}}=-\frac{\alpha}{2 \pi}
$$

order

order

$$
\begin{gathered}
\left.\Gamma^{\mu}\right|_{\mathrm{NNE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{4\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{4 p_{1} \cdot k\left(p_{2} \cdot k\right)^{2}}+ \\
+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{4\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{4 p_{1} \cdot k\left(p_{2} \cdot k\right)^{2}}-(1-\epsilon) \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k \gamma^{\mu} \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
\end{gathered}
$$

$$
I^{\mu \nu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu} k^{\nu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
$$

Next-†o-Next-†o-Eikonal order

$$
\begin{gathered}
\left.\Gamma^{\mu}\right|_{\mathrm{NNE}}=(\cdots)+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{4\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not k p / 1 \gamma^{\mu}}{4 p_{1} \cdot k\left(p_{2} \cdot k\right)^{2}}+ \\
+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{4\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k}+\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu} p / 2 \not / k}{4 p_{1} \cdot k\left(p_{2} \cdot k\right)^{2}}-(1-\epsilon) \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not / \gamma^{\mu} \not / k}{2 p_{1} \cdot k p_{2} \cdot k k^{2}}
\end{gathered}
$$

$$
I^{\mu \nu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu} k^{\nu}}{2 p_{1} \cdot k p_{2} \cdot k k^{2}} \quad I_{1}^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{4\left(p_{1} \cdot k\right)^{2} p_{2} \cdot k} \quad I_{2}^{\mu}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{4 p_{1} \cdot k\left(p_{2} \cdot k\right)^{2}}
$$

On going

Beyond one loop

- What happens inside ${ }^{\mathrm{o}_{\mathrm{oj}}} \mathrm{g}_{\mathrm{g}}$ each gauge set?
 - Can we see and understand the cancellation?
 - Can this method be generalized to all orders?

Thank you for your attention!

Thank you for your attention!

Backup slides

Glance beyond one loop

$$
=-\int \frac{d^{d} k_{1}}{(2 \pi)^{d}} \frac{d^{d} k_{2}}{(2 \pi)^{d}} \frac{m p_{1} \cdot p_{2}\left(k_{1}^{\mu}+k_{2}^{\mu}\right)}{p_{2} \cdot k_{1} p_{2} \cdot k_{2} p_{1} \cdot k_{1} p_{1} \cdot k_{2} k_{1}^{2} k_{2}^{2}}
$$

$$
+\int \frac{d^{d} k_{1}}{(2 \pi)^{d}} \frac{d^{d} k_{2}}{(2 \pi)^{d}} \frac{p_{1} \cdot p_{2}(k / 1+k / 2)\left(p_{1}^{\mu}+p_{2}^{\mu}\right)}{p_{2} \cdot k_{1} p_{2} \cdot k_{2} p_{1} \cdot k_{1} p_{1} \cdot k_{2} k_{1}^{2} k_{2}^{2}}
$$

