Porting Turchin's algorithm to Julia

Tatyana Abramova

Moscow Institute of Physics and Technology

August 12, 2019

Algorithm: Solution of Fredholm integral equation

Experimental data

Observed
value

Apparatus
function

\leftrightarrows

yr

A bit of noise

$$
f(y)=\int d x \quad \varphi(x) \quad * \quad K(x, y) \quad+\quad \varepsilon_{y}
$$

Fredholm equation is ill-posed.
Regularization: introduce additional information about $\varphi(x)$

$$
\varphi(x)-?
$$

Algorithm: Solution

$$
f(y)=\int K(x, y) \varphi(x) d x
$$

Decomposition of $\varphi(x)$ on basis $\left\{T_{n}(x)\right\}$:

$$
\begin{gathered}
\varphi(x)=\sum_{n} \varphi_{n} T_{n}(x) \\
K_{m n}=\int K\left(x, y_{m}\right) T_{n}(x) d x \\
f_{m}=f\left(y_{m}\right)
\end{gathered}
$$

Matrix form:

$$
f_{m}=K_{m n} \varphi_{n}
$$

Choose solution based on the strategy \hat{S}, which is using prior information about $\varphi(x)$:

$$
\begin{gathered}
\text { Optimal } \varphi_{n}=\hat{S}_{n}[f]=E\left[\varphi_{n} \mid f\right]=\int \varphi_{n} P(\varphi \mid f) d \varphi \\
P(\varphi \mid f)=\frac{P(\varphi) P(f \mid \varphi)}{\int d \varphi P(\varphi) P(f \mid \varphi)}
\end{gathered}
$$

Algorithm: Prior information

Conditions on prior information

$$
\begin{gathered}
I[P(\varphi)]=\int \ln P(\varphi) P(\varphi) d \varphi \rightarrow \min \\
\int P(\varphi) d \varphi=1 \\
\int\langle\varphi, \hat{\Omega} \varphi\rangle P(\varphi) d \varphi=\omega
\end{gathered}
$$

where $\hat{\Omega}=\left|\frac{d^{2}}{d x^{2}}\right\rangle\left\langle\frac{d^{2}}{d x^{2}}\right|$ - operator of smoothness

$$
P_{\alpha}(\vec{\varphi})=\frac{\alpha^{R g(\Omega) / 2} \operatorname{det} \Omega^{1 / 2}}{(2 \pi)^{N / 2}} \exp \left(-\frac{1}{2}(\vec{\varphi}, \alpha \Omega \vec{\varphi})\right),
$$

where $\alpha=\frac{1}{\omega}$ - parameter of smoothness that should be selected:

- Manually using known smoothness
- Using most probable parameter: $\alpha^{*}=\operatorname{argmax} P(\alpha \mid f)$
- Using prior information about smoothness $P(\alpha)$:

$$
P(\varphi)=\int P_{\alpha}(\varphi) P(\alpha) d \alpha
$$

Algorithm: Integration

$$
P(\varphi \mid f)=\frac{P(\varphi) P(f \mid \varphi)}{\int d \varphi P(\varphi) P(f \mid \varphi)}
$$

Gaussian errors

In case of Gaussian errors

$$
P(f \mid \varphi)=\frac{1}{\left.(2 \pi)^{M / 2} \Sigma\right|^{1 / 2}} \exp \left(-\frac{1}{2}(f-K \varphi)^{T} \Sigma^{-1}(f-K \varphi)\right)
$$

the integral can be calculated analytically
Desired vector and covariance matrix:

$$
\begin{gathered}
\varphi=\left(K^{T} \Sigma^{-1} K+\alpha^{*} \Omega\right)^{-1} K^{T} \Sigma^{-1} f \\
\Sigma_{\varphi}=\left(K^{T} \Sigma^{-1} K+\alpha^{*} \Omega\right)^{-1}
\end{gathered}
$$

MCMC integration

For any other kinds of errors the integral should be calculated numerically.

Kernels and bases

Bases

- Fourier
- Legendre polynomials
- Bernstein polynomials + boundary conditions
- Cubic Spline + boundary conditions (custom realization)
NOTE: for MCMC sampling omega matrix of basis should be nonsingular

MCMC sampling and omega matrix

$$
P_{\alpha}(\vec{\varphi})=\frac{\alpha^{R g(\Omega) / 2} \operatorname{det} \Omega^{1 / 2}}{(2 \pi)^{N / 2}} \exp \left(-\frac{1}{2}(\vec{\varphi}, \alpha \Omega \vec{\varphi})\right)
$$

Sampling with singular covariance matrix?

Cubic Spline basis

Cubic Spline basis

- arbitrary set of nodes (including repeating ones)
- arbitrary spline degree
- derivatives

TODO: refactor to polynomials for analytical integration

```
struct BSpline
    i::Int64
    k::Int64
    knots::Array{Float64, 1}
    func::Function
end
BSpline(i::Int64, k::Int64, knots::Array{Float64, 1})
derivative(b_spline:: BSpline, x::Float64, deg::Int64)
```


Example function

$$
\phi(x)=\frac{4}{\sqrt{2 \pi \cdot 0.4^{2}}} \exp \left(-\frac{(x-2)^{2}}{2 \cdot 0.4^{2}}\right)+\frac{2}{\sqrt{2 \pi \cdot 0.5^{2}}} \exp \left(-\frac{(x-4)^{2}}{2 \cdot 0.5^{2}}\right)
$$

phi (x)

Example kernels

Fourier basis

Fourier basis: 31 basis functions

Legendre polynomials basis

Legendre polynomials basis: 20 basis functions

Bernstein polynomials basis

Bernstein basis with 10 basis functions

Bernstein polynomials basis: 20 basis functions + zero boundary conditions

Cubic spline basis

Cubic Spline basis with 30 basis functions

Cubic spline basis: 30 basis functions + zero boundary conditions

Smoothness parameter

Cubic spline basis with 30 basis functions + boundary conditions, gaussian kernel.

Non-gaussian noise

Test sampling with gaussian model:
Mamba.jl package, 1 chain 1000 samples, Cubic spline basis with 30 basis functions and zero boundary conditions.

TODO: BAT.jl integration

Documentation:

- Theoretical introduction
- User's guide
- Getting started
- Example of reconstruction

Config file

```
using Logging
RTOL_QUADGK = 1e-8
MAXEVALS_QUADGK = 1e5
X_TOL_OPTIM = 1e-8
ORDER_QUADGK = 500
global_logger()
```

- integration constants
- optimization constants
- logger

Done

- 4 bases (2 with zero boundary conditions) and set of kernels
- User-defined or optimal α
- Gaussian errors and MC integration
- Documentation

Problems

- Choosing integration parameters (atol, xtol, maxevals)
- Choosing alpha boundaries(lower, higher limits and initial value for optimisation)
- Config file
- Logger
- Heaviside kernel: optimal alpha actually is not optimal

To do

- BAT MCMC integration
- BSpline refactoring
- Documentation structure
- Testing
- Release

