H1&ZEUS Status Report

Burkard Reisert MPI Project Review December 14 - 15, 2009

H1 & ZEUS MPI Group Members

Director - A. Caldwell

External scientific member - H. Abramowicz

Guest Scientist

- A Levy (ZEUS, Tel Aviv U.)

Staff scientists

- I. Abt (project leader ZEUS, ZEUS Physics coordinator)
- V. Chekelian (Project leader H1)
- G. Grindhammer (H1 QCD Convener, MPI@DESY)

Post-docs

MPI Munich

Burkard

Reisert

MPI

Project Review

2009

- B. Reisert (ZEUS, co-convener FL → SFEX+QCD)
- W. Schmidke (ZEUS)

PhD students

- R. Kogler (H1)
- A. Dossanov (H1)
- S. Shushkevich (H1)
- D. Britzger (H1, HH Uni, DESY)
- V. Drugakov (ZEUS, Minsk/DESY)
- P. Devgun (ZEUS, Punjab U.)
- I. Singh (ZEUS, Punjab U.)
- R. Aggarwal (ZEUS, Punjab U.)

Cooperation with former MPI PhD students and post-docs

- A. Dubak-Behrendt
- B. Olivier
- R. Placakyte
- A. Nikiforov

Administration & Support F. Happel, M. Schaber

HERA - the world's largest electron microscope (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

Shutdown on June 30, 2007, 23:00

HERA start: 1992 upgraded in 2001: "HERA II"

p: 920 GeV

e[±]: 27.5 GeV polarized

~ 0.3 km ~ ~

HERA

PETRA

spatial resolution: ~ 10-18 m / 19

colliding beams, equivalent to 50TeV on fixed target

H1 & ZEUS Collaborations

Salute to our collaborators in H1 & ZEUS

Burkard Reisert

MPI Project Review 2009 Many thanks to our colleagues in the electronics and mechanics departments for their design, construction, commissioning, maintenance, decommissioning efforts of some 20 years.

Hera Luminosity

Ap. Dg > 1X

MPI Munich

Burkard

Reisert

MPI

Project Review

2009

HERA I: 1992-2000 HERA II upgrade:

- luminosity
- longitudinal polarization of the lepton beams (spin rotator pairs around the interaction regions)
- massive upgardes also for the detectors

- running efficiently from 2003 onwards
- Luminosity
 L = 500 pb⁻¹ per exp.

MPI Activities

Physics:

- Inclusive neutral & charged current cross sections and structure functions F2, xF3 and FL (H1, ZEUS)
- Inclusive jets in DIS and photoproduction (H1)
- γp total cross sections (ZEUS)
- Leading neutrons in di-jet photoproduction (ZEUS)
- Combination of H1 and ZEUS inclusive data & QCD Fits

Services:

- Improve jet energy reconstruction and calibration (H1)
- Coordination of H1 analysis software (H100)
- Improve calibration of electron and hadronic final state (ZEUS)
- Provide ultimate precision of luminosity measurement (ZEUS)

Burkard

Reisert

MPI Project

Review

2009

Organization:

- ZEUS Physics coordinator
- (paper output rate doubled, I. Abt's term ended this summer)
- Two physics working group conveners (H1 & ZEUS, one each)
- DIS09 working group convener
- Organization of H1 physics working group meeting at MPI

DIS Neutral Current Event

Burkard Reisert

MPI Project Review 2009

Deep Inelastic Scattering

Burkard Reisert

MPI Project Review 2009

$\frac{d^{2}\sigma^{e^{\pm}p \rightarrow e^{\pm}X}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \underbrace{\left(1 + \left(1 - y\right)^{2}\right)}_{Y_{\pm} = 1 \pm \left(1 - y\right)^{2}} \cdot \left(F_{2}\left(x, Q^{2}\right) - \frac{y^{2}}{Y_{+}}F_{L}\left(x, Q^{2}\right) \mp \frac{Y_{-}}{Y_{+}}xF_{3}\left(x, Q^{2}\right)\right)}_{\tilde{\sigma}: \text{ Reduced cross section}}$

Neutral current DIS cross section expressed by structure functions:

Cross Sections for direct FL extraction

Review 2009

MPI

Extracted F_1 and $F_2 - ZEUS$

MPI

- Most precise F_2 measurement from ZEUS in kinematic region studied
- First F_2 measurement without assumptions on F
- Data support a non-zero F
- Predictions for F_2 and F_1 are consistent with data

Phys. Lett. B 682 (2009) 8-22 Cross section and structure functions in Durham HEP database

Average F₁

- H1 measurements cover 2.5 ≤ Q2 ≤ 800 GeV² and 0.00005 ≤ x ≤ 0.05
- For Q² ≥ 10 GeV², agree well with H1PDF 2009 prediction.
- MSTW and H1PDF 2009 predictions use the same heavy flavour scheme to calculate F_L .
- Data agree better with calculation of CTEQ (and Alekhin)
- Data is consistent with constant $R \sim 0.25$ (H1) R = 0.18 - 0.05 (ZEUS). $R = F_L/(F_2-F_L)$
- Color-Dipol Picture: R = 0.27 (D. Schildknecht)

NC Cross Sections at High Q²

Δ₄.Δ₃≥jt MPI Munich

Burkard Reisert

MPI Project Review 2009

NC Cross Section Asymmetries

Charged Current Measurements

MPI Project Review 2009

SM describes all HERA data: Impressive success of SM

HERA Averaged NC cross sections

DESY Report 09-158 to be published in JHEP H1 and ZEUS 1.6 $\sigma^+_{r,NC}(x,Q^2)$ x=0.002 HERA I NC e⁺p x=0.0002 ZEUS **H1** 1.2 x=0.008 1 0.8 x=0.032 0.6 x=0.08 0.4 x=0.25 0.2 10^{2} 103 104 10 Q^2 / GeV^2

MPI Munic

Burkard

Reisert

MPI Project

Review

2009

- Precise measurements from two experiments
- For $Q^2 \leq 100 \text{ GeV}^2$

 $δ_{stat}$ ≤1%, $δ_{sys}$ ≤3% for Q² ≥ 1000 GeV² $δ_{stat}$ > $δ_{sys}$

- Combine datasets from both experiments:
 Key assumption
 H1 and ZEUS measure the same cross section at the same x,Q²,y
- Improved precision of combined H1 and ZEUS datasets (stat and sys)

H1 and ZEUS combined QCD Fit

QCD Analysis of combined H1 & ZEUS HERA-I data to extract proton PDFs

PDF general form ($Q_0^2=1.9$): $xPDF = Ax^B(1-x)^C \cdot (1+Dx+...)$ Parameterize: $g, u_{v_1} d_{v_2}, U(=u+c), D(=d+s)$

MPI Munich Burkard Reisert

MPI Project Review 2009 Impressive precision HERA alone competitive with global analysis

Expect even higher precision when including HERA-II

MPI

Results from the shower separation

NN output can be interpreted as probability

 $P_{em} = \frac{1-o}{2}$ reconstructed jet's electromagnetic energy fraction:

$$f_{em}^{rec} = \left(\sum_{i=0}^{N_{cls}} P_{em}^i E_i^{cls} + \sum_{j=0}^{N_{em}} E_j^{em}\right) \Big/ E_{jet}$$

generated jet's electromagnetic energy fraction:

 $f_{em}^{gen} = \left(\sum E_{\gamma} + \sum E_{elecs}\right) \Big/ E_{jet}^{gen}$

Reisert MPI Project Review 2009

MPI Municl

Burkard

Excellent correspondence between gen. and rec. electromagnetic fraction Improved energy resolution

2) New jet calibration after the improvements in the reconstruction

Definition of hadronic final state with cluster-wise calibration

$$hfs = \sum f^i \, cls^i_{jet} + \sum trk^i_{jet} + \sum g^i \, cls^i_{out} + \sum trk^i_{out}$$

Using a well defined single-jet calibration sample, minimize

$$\chi^2 = \sum_{i=1}^{Nevts} \frac{\left(P_T^{h,i} - P_T^{da,i}\right)^2}{\sigma_i^2}$$

to get the calibration functions f and g.

MPI Munic

Burkard

Reisert

MPI Project

Review

2009

dedicated 1-jet calibration sample

Jet energy scale uncertainty within 1% feasible - extended η range up to 2.5 Expect reduced syst. unc. for Jet measurements and as extraction 20

ZEUS: Precision Luminosity Measurement

LUMI @ ZEUS, Bethe-Heitler $ep \rightarrow epg$, two measurements:

- Direct photon calorimeter (PCAL)
- · Converted pair spectrometer
- agree ~1%, sys. unc. ~2.6% dominated by P(conversion)

MPI responsible

Ongoing work to reduce sys. unc.

Burkard Reisert

MPI Project Review 2009 Measure spectrometer Acceptance with 6m Tagger:

- Tag e from ep→epγ⁻
- Count g in spectrometer
- Need rad. corr. Calculation ep→epγγ, ep →epe⁺e⁻

Improve uncertainty of P(conversion)

- Measure composition of window
- Compare GEANT $\leftarrow \rightarrow s(\gamma \rightarrow e^+e^-)$ measured to <1% in 1968
- Already discrepancy found, unc. on P(conversion) significantly reduced

ZEUS: Energy Dependence of $\sigma_{tot}(\gamma p)$

Dedicated trigger: energy in RCAL & positron in 6m-Tagger
 Data taken @ E_n = 920, 460, 575 GeV

Progress so far:

- Eliminate intense beam-induced min.-bias trigs.
- Subtract overlays of untagged-gp & Bethe-Heitler e⁺ (high rate)
- Precise measure of energy in 6m-Tagger

Burkard Reisert MPI

Project Review

- <u>Work in progress:</u>
- Determine precise 6m-Tagger acceptance (untagged γp trigs.)
- Tune Pythia w/ measured data \rightarrow precise acceptance A_{CAL}
- Prospect for best ever $\sigma_{tot}(\gamma p)$ and energy dependence

ZEUS: Leading Neutron Production in di-jet photoproduction Nucl. Phys. B 827 (2010) 1

- Study of leading neutrons in $e + p \rightarrow e + jet + jet + n$, $Q^2 \sim 0$
- Focus on neutron p_{τ} , energy $(x_{L} = E_{n}/E_{p})$ measurements:

Burkard Reisert

MPI Project Review 2009

- 1st ever measure of p_T^2 slopes *b* d $\sigma/dp_T^2 \sim exp(-b p_T^2)$ this process
- Dijet-γp b (solid) similar to DIS (open)
 similar production mechanism

- In γp w/o jet requirement (red) LN suppressed rel. to DIS (open) @ low x_L
 - ⇔ rescattering models
- In γp with high E_T jets (solid) LN suppressed rel. to DIS @ high x_L shown to be kinematic constraints
 - \Rightarrow no clear sign of rescattering

Summary & Outlook

- HERA experiments H1 and ZEUS passed through the transition from active data taking to pure physics analysis
- Ongoing efforts improving reconstruction algorithms and calibrations taking advantage of full data samples.

Burkard Reisert

MPI Project Review 2009

- Steady stream of physics output, i.e. papers.
- Both MPI groups, H1 and ZEUS, enjoy high visibility within the HERA communinty