The mass of the lightest Higgs boson in the MSSM

Heidi Rzehak Max-Planck-Institut für Physik, München

- 1. the MSSM and its Higgs bosons
- 2. the lightest Higgs-boson mass M_{h^0}
- 3. precise prediction of M_{h^0}

Construction:

- start out with the Standard Model (SM)
 - fermions: leptons and quarks
 - bosons: gauge bosons (W-, Z-bosons, photon, gluons)
 Higgs boson

Construction:

- start out with the Standard Model (SM)
- make it supersymmetric:

Construction:

- start out with the Standard Model (SM)
- make it supersymmetric:

Supersymmetry?:

fermionic degrees of freedom

bosonic degrees of freedom

Construction:

- start out with the Standard Model (SM)
- add superpartners:

to each fermion \rightarrow one boson

to each boson \rightarrow one fermion

Note: Particle and corresponding SUSY-partner:

same quantum numbers except for spin quantum number

Construction:

- start out with the Standard Model (SM)
- add superpartners

(replace fields by **superfields** (bos./ferm. comp.))

Construction:

- start out with the Standard Model (SM)
- add superpartners

(replace fields by **superfields** (bos./ferm. comp.))

It is not that easy...

In a supersymmetric theory:

mass of particles \equiv mass of their superpartners

Problem: no SUSY-particles have been observed

if realised in nature

supersymmetry must be broken

It is not that easy...

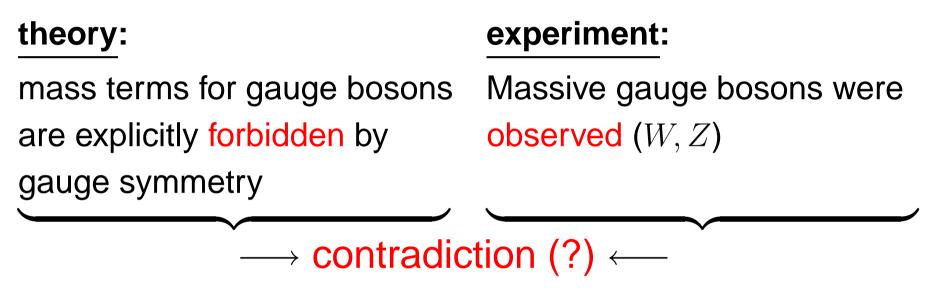
In a supersymmetric theory:

mass of particles \equiv mass of their superpartners

Problem: no SUSY-particles have been observed

if realised in nature supersymmetry must be broken

Solution for the MSSM:


Add soft supersymmetry breaking terms,

explicit symmetry breaking (many new parameters!)

(soft: relations between dimensionless couplings remain unchanged, no higher than logarithmic divergences)

Standard Model (SM):

Recall: Wherefore a Higgs boson?

Standard Model (SM):

Recall: Wherefore a Higgs boson?

theory:
mass terms for gauge bosons
are explicitly forbidden by
gauge symmetryexperiment:
Massive gauge bosons were
observed (W, Z) \longrightarrow contradiction (?) <---</td>Solution: spontaneous symmetry breaking !

Standard Model (SM):

Recall: Wherefore a Higgs boson?

theory:
mass terms for gauge bosons
are explicitly forbidden by
gauge symmetryexperiment:
Massive gauge bosons were
observed (W, Z) \longrightarrow contradiction (?) <---</td>

Solution: spontaneous symmetry breaking

possible realisation:

scalar field ϕ (*Higgs field*) with a finite vacuum expectation value exists

 $V = \mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2$

 \Rightarrow Generation of gauge boson and fermion masses (in the SM)

Standard Model (SM):

quark masses generated by terms proportional to:

• the Higgs doublet H for the down-type quarks $H = \begin{pmatrix} v \end{pmatrix}$

$$\begin{pmatrix} G^+ \\ \gamma + \frac{1}{\sqrt{2}}(h + iG^0) \end{pmatrix}$$

• the charged conjugated Higgs doublet H_c for the up-type quarks

Standard Model (SM):

quark masses generated by terms proportional to:

• the Higgs doublet H for the down-type quarks $H = \begin{pmatrix} v \end{pmatrix}$

$$\left. \begin{array}{c} G^+ \\ + \frac{1}{\sqrt{2}}(h + iG^0) \end{array} \right)$$

- the charged conjugated Higgs doublet H_c for the up-type quarks **MSSM**:
 - Problem: term generating up-type quark masses

Start with: term proportional to H_c

then: fields \rightarrow superfields (bos./ferm. comp.)

 \Rightarrow new term: not supersymmetric

Solution: instead of H_c : Second Higgs doublet

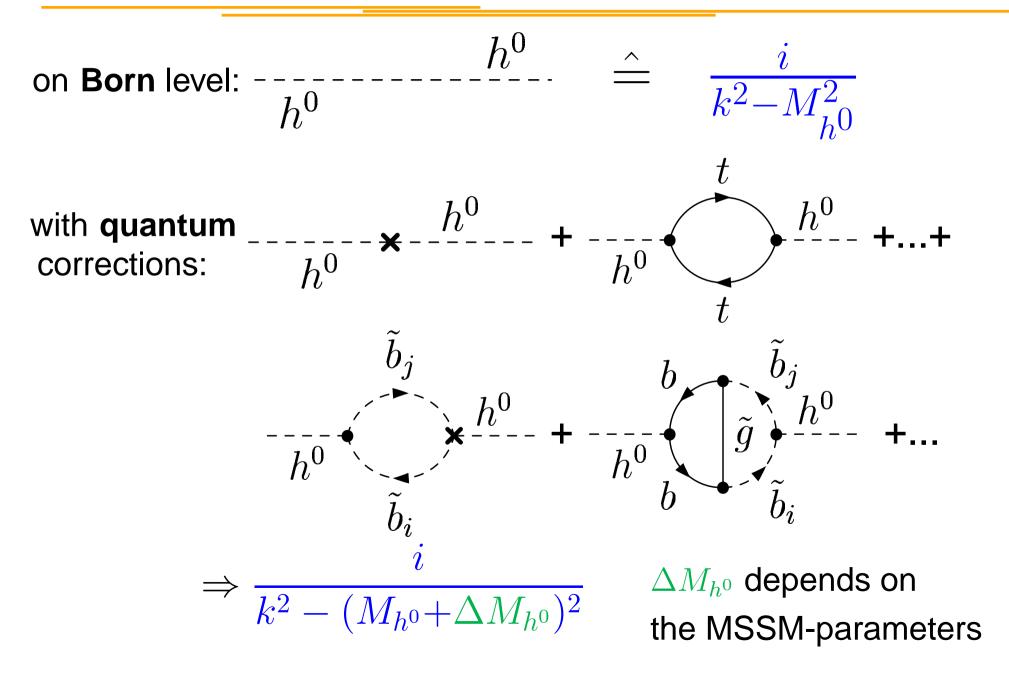
Construction:

- start out with the Standard Model (SM)
- add a second Higgs doublet
- add superpartners

(replace fields by **superfields** (bos./ferm. comp.))

• add soft supersymmetry breaking terms

Higgs bosons in the MSSM


physical mass eigenstates:

masses of the Higgs-bosons:

- not all independent: common: A⁰-boson mass M_A as free parameter
- lightest Higgs-boson: h^0

Upper theoretical **Born** mass limit: $M_{h^0} \leq M_Z$ with quantum corrections of **higher orders**: $M_{h^0} \leq 135 \text{ GeV}$

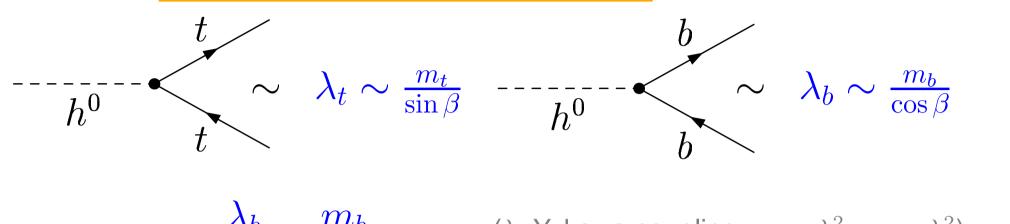
Higgs-propagator

M_{h^0} as precision observable

• **Discovery** of the Higgs-boson:

accurate measurement & precise prediction of the mass:

 \Rightarrow strong bounds on the MSSM-parameters, e.g. on A_t (A_t : SUSY-breaking parameter of the top squark sector)


at the LHC: $\Delta M_{h^0}^{\text{exp}} = 0.2 \text{ GeV}$ (LC: $\Delta M_{h^0}^{\text{exp}} = 0.05 \text{ GeV}$)

 \Rightarrow small theoretical uncertainty necessary (truncation of perturbation series \Rightarrow theoretical uncertainty)

• **Before** the discovery:

Exclusion of parts of the parameter space possible

 ΔM_{h^0} : main contributions

with:
$$\frac{\lambda_b}{\lambda_t} = \frac{m_b}{m_t} \tan \beta$$
 (λ : Yukawa coupling, $\alpha_t \sim \lambda_t^2$, $\alpha_b \sim \lambda_b^2$)
($\tan \beta = \frac{v_2}{v_1}$; v_1 , v_2 : Higgs vac. exp. values)

Large contribution: – from the top sector

 h^0

 \tilde{h}^2

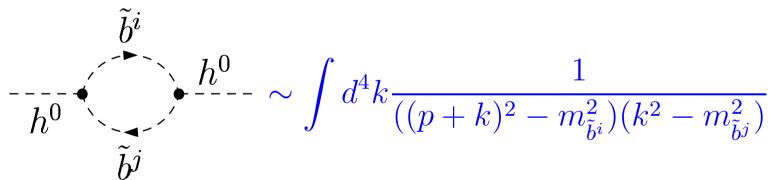
– from the bottom sector for large $\tan\beta$

 α : mixing angle of h^0 , H^0 • Yukawa part: A_b : SUSY-breaking parameter μ : Higgsino mass term

 $\sim \lambda_b(A_b^*\sin\alpha + \mu\cos\alpha)$

 \Rightarrow bottom-contribution large for μ and tan β large

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

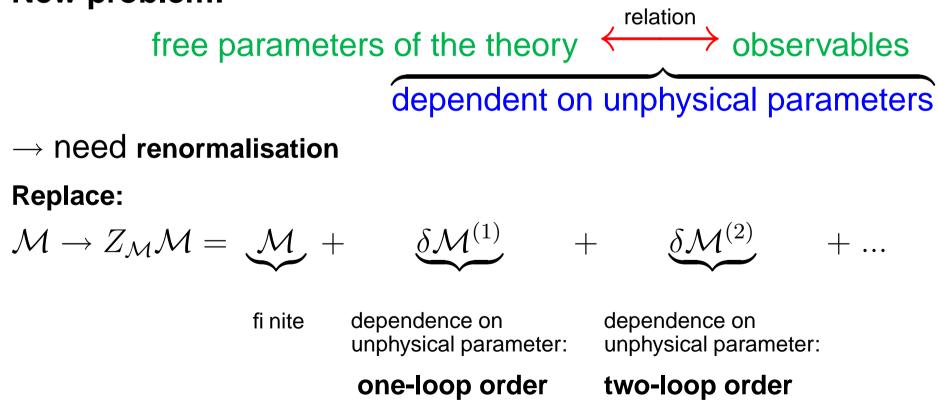

• parameters of the top/bottom sector are defined at one-loop:

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

parameters of the top/bottom sector are defined at one-loop:

Problem: Loop integrals are **UV-divergent**:

Example:



 \rightarrow need a regularisation scheme, e.g. use a Cut-off parameter New problem:

free parameters of the theory dependent on unphysical parameters

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

parameters of the top/bottom sector are defined at one-loop:
 New problem:

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t, b\}})$:

parameters of the top/bottom sector are defined at one-loop:

Replace:

Л

$$\mathcal{A} \to Z_{\mathcal{M}}\mathcal{M} = \mathcal{M}$$

fi nite dependence on dependence on unphysical parameter: unphysical parameter: one-loop order two-loop order

Counterterms (δ ...) of input parameters:

absorption of the dependence on the unphysical parameter

(= divergences)

• freedom in the choice of finite part

(but for perturbative calculations: finite part should be small !)

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

parameters of the top/bottom sector are defined at one-loop:

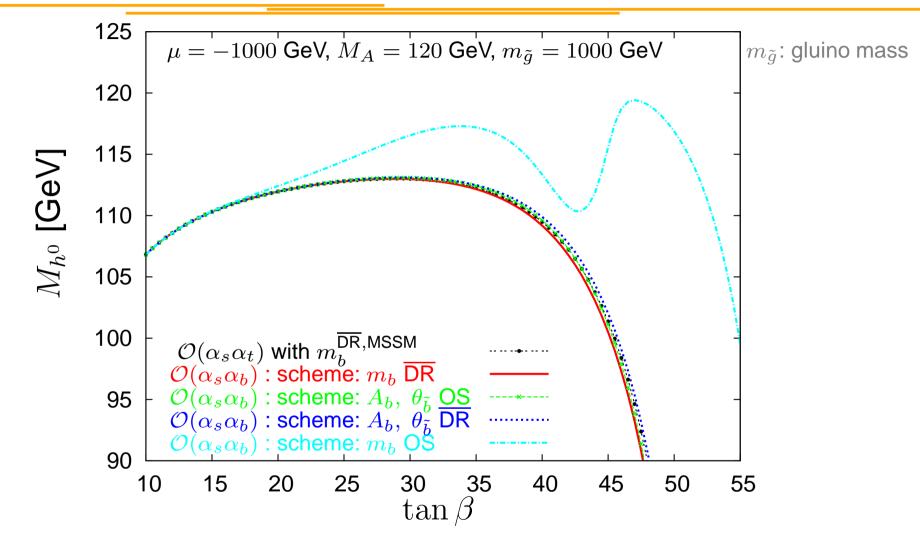
different choices of schemes are possible

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

- parameters of the top/bottom sector are defined at one-loop:
 different choices of schemes are possible
- investigation of **scheme dependence**
 - \Rightarrow information about size of missing higher order contributions
 - \Rightarrow theoretical error estimate

Within the 2-loop calculation $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$:

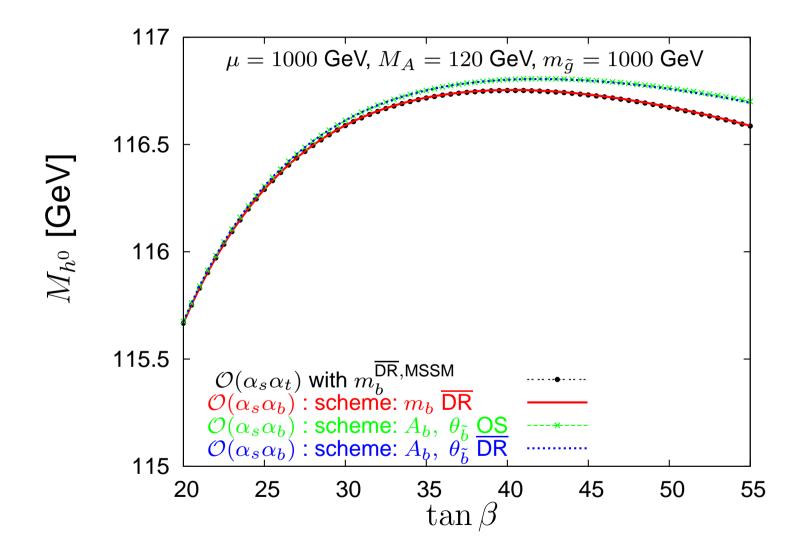
- parameters of the top/bottom sector are defined at one-loop:
 different choices of schemes are possible
- investigation of **scheme dependence**
 - \Rightarrow information about size of missing higher order contributions
 - \Rightarrow theoretical error estimate


Here: top sector: only one scheme (masses/mixing angle on-shell) bottom sector: 4 different schemes

Different schemes

Bottom sector:

	scheme	b-mass m_b	A_b	mixing angle $ heta_{ ilde{b}}$
	$m_b \overline{DR}$	running (DR)	running (DR)	dep.
	A_b , $\theta_{\tilde{b}}$ OS	dep.	on-shell	on-shell
	$A_b, \theta_{\tilde{b}} \overline{DR}$	dep.	running (DR)	running (DR)
analog. $m_b OS$ top sector		on-shell	dep.	on-shell
top sector				


Results: $\tan\beta$ -dependence (μ negative)

• scheme m_b OS: very large corrections, unpractical scheme


• other schemes: sizeable differences, up to $\mathcal{O}(1 \text{ GeV})$, for large $\tan \beta$

Results: $\tan \beta$ -dependence (μ positive)

• tiny differences between schemes, max. $\mathcal{O}(0.1 \text{ GeV})$

Results: $m_{\tilde{g}}$ -dependence

- \bullet subleading corrections up to $\mathcal{O}(3~{\rm GeV})$
- scheme differences of the order of $\mathcal{O}(2 \text{ GeV})$

Summary

- mass of the lightest MSSM-Higgs-boson M_{h^0} = interesting **precision observable**
- The **knowledge** of quantum corrections is **necessary** for **precise** theoretical predictions of M_{h^0} .
- bottom-quark/squark-corrections:

 \star relevant for large μ and aneta

 \star subleading two-loop contributions of $\mathcal{O}(\alpha_s \alpha_b)$ can yield shifts up to 3 GeV.

• first comparison between different schemes for $\mathcal{O}(\alpha_s \alpha_b)$:

 \star for positive μ : corrections are under control

 \star for negative μ : differences between schemes are of the order of $\mathcal{O}(\pm 2~{\rm GeV})$