Generalized complex geometry and topological sigma models

work in collaboration with

Stephano Chiantese (HU Berlin)
 and Claus Jeschek (MPI)

(hep-th/0408169)

Florian Gmeiner
flo@mppmu.mpg.de

MPI für Physik, München

Plan

- Introduction

Plan

- Introduction
- Topological sigma models

Plan

- Introduction
- Topological sigma models
- Generalized complex geometry

Plan

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models

Plan

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models
- Mirror symmetry

Plan

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models
- Mirror symmetry
- Conclusions and Outlook

Introduction

What is string theory all about?

Introduction

What is string theory all about?
A theory of maps $\phi: \Sigma \rightarrow X$ from the 2d worldsheet to the 10d target space.

Introduction

What is string theory all about?
A theory of maps $\phi: \Sigma \rightarrow X$ from the 2d worldsheet to the 10d target space.

We take $X=\mathbb{R}^{1,3} \times M^{6}$.

Sigma models

- Polyakov action

$$
\int \mathrm{D} \phi \mathrm{D} g e^{\int_{\Sigma}|\partial \phi|^{2}}
$$

Sigma models

- Polyakov action

$$
\int \mathrm{D} \phi \mathrm{D} g e^{\int_{\Sigma}|\partial \phi|^{2}}
$$

- \rightsquigarrow integration over maps and metrics on Σ.

Sigma models

- Polyakov action

$$
\int \mathrm{D} \phi \mathrm{D} g e^{\int_{\Sigma}|\partial \phi|^{2}}
$$

- \rightsquigarrow integration over maps and metrics on Σ.
- integration only over ϕ gives the sigma model.

Sigma models

- Polyakov action

$$
\int \mathrm{D} \phi \mathrm{D} g e^{\int_{\Sigma}|\partial \phi|^{2}}
$$

- \rightsquigarrow integration over maps and metrics on Σ.
- integration only over ϕ gives the sigma model.
- supersymmetric models \rightsquigarrow make ϕ a superfield containing worldsheet bosons and left- and right-moving fermions.

Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.

[^0]
Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
$(2,2)$ because we want no loop corrections on the worldsheet

Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data $\left(I_{+}, I_{-}, g, H\right)$.
$(2,2)$ because we want no loop corrections on the worldsheet

Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data $\left(I_{+}, I_{-}, g, H\right)$.
- $I_{ \pm}$: two complex structures $\left(I_{ \pm}^{2}=-1\right)$ for the left- and right-moving fermions.
$(2,2)$ because we want no loop corrections on the worldsheet

Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data $\left(I_{+}, I_{-}, g, H\right)$.
- $I_{ \pm}$: two complex structures $\left(I_{ \pm}^{2}=-1\right)$ for the left- and right-moving fermions.
- g : Riemannian metric on the target space, Hermitian with respect to $I_{ \pm}$.
$(2,2)$ because we want no loop corrections on the worldsheet

Sigma models

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data $\left(I_{+}, I_{-}, g, H\right)$.
- $I_{ \pm}$: two complex structures $\left(I_{ \pm}^{2}=-1\right)$ for the left- and right-moving fermions.
- g : Riemannian metric on the target space, Hermitian with respect to $I_{ \pm}$.
- H : 3-form field strength of a 2-form field B.
$(2,2)$ because we want no loop corrections on the worldsheet

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a $\mathrm{U}(1)$ R-symmetry current.

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to twist the model to get a topological theory.

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to twist the model to get a topological theory.
- \rightsquigarrow some of the fermions become worldsheet singlets. \rightsquigarrow the theory becomes background independent.

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a $\mathrm{U}(1)$ R-symmetry current.
- Idea: Use the R-symmetry current to twist the model to get a topological theory.
- \rightsquigarrow some of the fermions become worldsheet singlets. \rightsquigarrow the theory becomes background independent.
- \rightsquigarrow less information.
(in the same way as the de Rham complex $\Omega^{*}(X)$ contains more information then it's cohomology $\left.H^{*}(X)\right)$

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a $\mathrm{U}(1)$ R-symmetry current.
- Idea: Use the R-symmetry current to twist the model to get a topological theory.
- \rightsquigarrow some of the fermions become worldsheet singlets. \rightsquigarrow the theory becomes background independent.
- \rightsquigarrow less information.
(in the same way as the de Rham complex $\Omega^{*}(X)$ contains more information then it's cohomology $H^{*}(X)$)
- but

Topological sigma models

- on the worldsheet we have two conserved supercurrents and a $\mathrm{U}(1)$ R-symmetry current.
- Idea: Use the R-symmetry current to twist the model to get a topological theory.
- \rightsquigarrow some of the fermions become worldsheet singlets. \rightsquigarrow the theory becomes background independent.
- \rightsquigarrow less information.
(in the same way as the de Rham complex $\Omega^{*}(X)$ contains more information then it's cohomology $H^{*}(X)$)
- but computing physical observables can be reduced to geometrical questions.

Topological sigma models

Before the twist: WS fermions $\psi_{ \pm}$, which can be split into (anti-)holomorphic components w.r.t. $I_{ \pm}$

$$
\mathcal{P}_{+} \psi_{+}, \overline{\mathcal{P}}_{+} \psi_{+}, \mathcal{P}_{-} \psi_{-}, \overline{\mathcal{P}}_{-} \psi_{-},
$$

where $\mathcal{P}_{ \pm}=\frac{1}{2}\left(1-i I_{ \pm}\right), \overline{\mathcal{P}}_{ \pm}=\frac{1}{2}\left(1+i I_{ \pm}\right)$.

Topological sigma models

Before the twist: WS fermions $\psi_{ \pm}$, which can be split into (anti-)holomorphic components w.r.t. $I_{ \pm}$

$$
\mathcal{P}_{+} \psi_{+}, \overline{\mathcal{P}}_{+} \psi_{+}, \mathcal{P}_{-} \psi_{-}, \overline{\mathcal{P}}_{-} \psi_{-},
$$

where $\mathcal{P}_{ \pm}=\frac{1}{2}\left(1-i I_{ \pm}\right), \overline{\mathcal{P}}_{ \pm}=\frac{1}{2}\left(1+i I_{ \pm}\right)$.
This corresponds to a splitting of the (complexified) tangent bundle of the target space

$$
T M_{\mathbb{C}}=T M_{+}^{1,0} \oplus T M_{+}^{0,1} \oplus T M_{-}^{1,0} \oplus T M_{-}^{0,1}
$$

Topological sigma models

Twist: Mix the fermionic spin with the vectorial/axial $U(1)$ current to get the topological A / B model.

Topological sigma models

Twist: Mix the fermionic spin with the vectorial/axial $U(1)$ current to get the topological A/B model.
$q_{V / A}$: vectorial/axial charge, J : spin before the twist, $J_{A / B}$: spin after the twist $=J+q_{V / A} / 2$.

	q_{V}	q_{A}	J	J_{A}	J_{B}
$\mathcal{P}_{+} \psi_{+}$	-1	-1	$-\frac{1}{2}$	-1	-1
$\overline{\mathcal{P}}_{+} \psi_{+}$	+1	+1	$-\frac{1}{2}$	0	0
$\mathcal{P}_{-} \psi_{-}$	-1	+1	$+\frac{1}{2}$	0	+1
$\overline{\mathcal{P}}_{-} \psi_{-}$	+1	-1	$+\frac{1}{2}$	+1	0

Topological sigma models

After the twist: Scalar fermions

- A model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\mathcal{P}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{1,0}$.

Topological sigma models

After the twist: Scalar fermions

- A model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\mathcal{P}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{1,0}$.
- B model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\overline{\mathcal{P}}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{0,1}$.

Topological sigma models

After the twist: Scalar fermions

- A model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\mathcal{P}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{1,0}$.
- B model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\overline{\mathcal{P}}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{0,1}$.

Standard approach: Identify $I_{ \pm}$and combine the fields into sections of $T M$ (A model) or $T M^{0,1}$ (B model). The A/B model depends only on the Kähler/complex structure moduli of the theory.

Topological sigma models

After the twist: Scalar fermions

- A model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\mathcal{P}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{1,0}$.
- B model: $\overline{\mathcal{P}}_{+} \psi_{+}$and $\overline{\mathcal{P}}_{-} \psi_{-}$, which are sections of $T M_{+}^{0,1}$ and $T M_{-}^{0,1}$.

Standard approach: Identify $I_{ \pm}$and combine the fields into sections of $T M$ (A model) or $T M^{0,1}$ (B model). The A/B model depends only on the Kähler/complex structure moduli of the theory.

Note: A and B model are related by $I_{-} \leftrightarrow-I_{-}$.

Generalized complex geometry

Generalized complex geometry

Generalized complex geometry

Generalized complex geometry

Generalized complex geometry

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

Generalized complex geometry

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

	Standard	Generalized
	$T M$	$T M \oplus T M^{*}$
Elements	X	$X+\xi$
Structure group	$G L(2 d)$	$O(2 d, 2 d)$
With compl. str.	$U(d)$	$U(d, d)$
With metric	$O(2 d)$	$O(2 d) \times O(2 d)$

Generalized complex geometry

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

	Standard	Generalized
	$T M$	$T M \oplus T M^{*}$
Elements	X	$X+\xi$
Structure group	$G L(2 d)$	$O(2 d, 2 d)$
With compl. str.	$U(d)$	$U(d, d)$
With metric	$O(2 d)$	$O(2 d) \times O(2 d)$

\exists a natural inner product on $T \oplus T^{*}$ given by

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\xi(X)+\eta(Y))
$$

Generalized complex structures

- Generalized complex geometry interpolates between symplectic and complex geometry.

Generalized complex structures

- Generalized complex geometry interpolates between symplectic and complex geometry.
- Complex structure:

$$
J: T M \rightarrow T M, \quad J^{2}=-1
$$

Symplectic structure:

$$
\omega: T M \rightarrow T M^{*}, \quad \omega^{*}=-\omega
$$

Generalized complex structures

- Generalized complex geometry interpolates between symplectic and complex geometry.
- Complex structure:

$$
J: T M \rightarrow T M, \quad J^{2}=-1
$$

Symplectic structure:

$$
\omega: T M \rightarrow T M^{*}, \quad \omega^{*}=-\omega
$$

- A Generalized complex structure (GCS) \mathcal{J} can be defined as an endomorphism on $T M \oplus T M^{*}$, which satisfies

$$
\mathcal{J}^{2}=-1 \quad \text { and } \quad \mathcal{J}^{*}=-\mathcal{J}
$$

Generalized Kähler geometry

Notation: Write an element of $T \oplus T^{*}$ as a vector $\binom{X}{\xi}$.

Generalized Kähler geometry

Notation: Write an element of $T \oplus T^{*}$ as a vector $\binom{X}{\xi}$.

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \quad \text { and } \quad \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

Limiting cases reproducing standard complex and symplectic structures.

Generalized Kähler geometry

Notation: Write an element of $T \oplus T^{*}$ as a vector $\binom{X}{\xi}$.

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \quad \text { and } \quad \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric $G\left(G^{2}=1\right)$ on $T M \oplus T M^{*}$ which commutes with \mathcal{J}

Generalized Kähler geometry

Notation: Write an element of $T \oplus T^{*}$ as a vector $\binom{X}{\xi}$.

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \quad \text { and } \quad \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric $G\left(G^{2}=1\right)$ on $T M \oplus T M^{*}$ which commutes with \mathcal{J}
\rightsquigarrow another GCS given by $G \mathcal{J}$.

Generalized Kähler geometry

Notation: Write an element of $T \oplus T^{*}$ as a vector $\binom{X}{\xi}$.

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \quad \text { and } \quad \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric $G\left(G^{2}=1\right)$ on $T M \oplus T M^{*}$ which commutes with \mathcal{J}
\rightsquigarrow another GCS given by $G \mathcal{J}$.
From a standard Kähler structure (g, J, ω) we get $\mathcal{J}_{J}, \mathcal{J}_{\omega}$ and $G=-\mathcal{J}_{J} \mathcal{J}_{\omega}$.

Generalized topological sigma models

Define a generalized Kähler structure by

$$
\mathcal{J}_{1 / 2}=\frac{1}{2}\left(\begin{array}{cc}
I_{+} \pm I_{-} & -\left(\omega_{+}^{-1} \mp \omega_{-}^{-1}\right) \\
\omega_{+} \mp \omega_{-} & -\left(I_{+}^{T} \pm I_{-}^{T}\right)
\end{array}\right) .
$$

The data of a bi-Hermitian geometry can be reconstructed using $\omega_{ \pm}=g I_{ \pm}$.

Generalized topological sigma models

Define a generalized Kähler structure by

$$
\mathcal{J}_{1 / 2}=\frac{1}{2}\left(\begin{array}{cc}
I_{+} \pm I_{-} & -\left(\omega_{+}^{-1} \mp \omega_{-}^{-1}\right) \\
\omega_{+} \mp \omega_{-} & -\left(I_{+}^{T} \pm I_{-}^{T}\right)
\end{array}\right) .
$$

The data of a bi-Hermitian geometry can be reconstructed using $\omega_{ \pm}=g I_{ \pm}$.
\rightsquigarrow We can desribe the target space of the top. sigma models with a GKS.

Generalized B/A model:

$$
\Psi_{1 / 2}:=\frac{1}{2}\left(1+i \mathcal{J}_{1 / 2}\right)\binom{\psi_{+}+\psi_{-}}{g\left(\psi_{+}-\psi_{-}\right)}
$$

Generalized topological sigma models

- Question: How to get the usual top. sigma models from the generalized ones?

Generalized topological sigma models

- Question: How to get the usual top. sigma models from the generalized ones?
- Answer: From the generalized A or B model we get both. E.g. from the gen. B model we get the old B model by taking $I_{+}=I_{-}$and the old A model by $I_{+}=-I_{-}$.

$$
\mathcal{J}_{1}=\frac{1}{2}\left(\begin{array}{cc}
I_{+}+I_{-} & -\left(\omega_{+}^{-1}-\omega_{-}^{-1}\right) \\
\omega_{+}-\omega_{-} & -\left(I_{+}^{T}+I_{-}^{T}\right)
\end{array}\right) \xrightarrow[A]{\left(\begin{array}{cc}
I & 0 \\
0 & -I^{T}
\end{array}\right)}\left(\begin{array}{cc}
0 & \omega^{-1} \\
\omega & 0
\end{array}\right)
$$

Mirror symmetry

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.

Mirror symmetry

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$
\mathcal{J}_{1} \quad \longleftrightarrow \mathcal{J}_{2}
$$

exchanges generalized A and B model.

Mirror symmetry

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$
\mathcal{J}_{1} \longleftrightarrow \mathcal{J}_{2},
$$

exchanges generalized A and B model.

- In the limit of $I_{+}=I_{-}$this exchanges the old A and B model.

Mirror symmetry

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$
\mathcal{J}_{1} \longleftrightarrow \mathcal{J}_{2},
$$

exchanges generalized A and B model.

- In the limit of $I_{+}=I_{-}$this exchanges the old A and B model.
- Kähler and complex structure moduli are exchanged.

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?
- What about lifts to M-theory (G2 manifolds)?

Conclusions and Outlook

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?
- What about lifts to M-theory (G2 manifolds)?
- Can we construct new types of topological branes using this framework?

[^0]: $a_{(2,2)}$ because we want no loop corrections on the worldsheet

