Generalized complex geometry and topological sigma models

work in collaboration with

Stephano Chiantese (HU Berlin)

and Claus Jeschek (MPI)

(hep-th/0408169)

Florian Gmeiner

flo@mppmu.mpg.de

MPI für Physik, München

Ringberg 10/27/04 - p.1/17

• Introduction

- Introduction
- Topological sigma models

- Introduction
- Topological sigma models
- Generalized complex geometry

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models
- Mirror symmetry

- Introduction
- Topological sigma models
- Generalized complex geometry
- Generalized topological sigma models
- Mirror symmetry
- Conclusions and Outlook

Introduction

What is string theory all about?

Introduction

What is string theory all about?

A theory of maps $\phi: \Sigma \to X$ from the 2d worldsheet to the 10d target space.

Introduction

What is string theory all about?

A theory of maps $\phi: \Sigma \to X$ from the 2d worldsheet to the 10d target space.

We take $X = \mathbb{R}^{1,3} \times M^6$.

Polyakov action

$$\int \mathrm{D}\phi \mathrm{D}g \, e^{\int_{\Sigma} |\partial \phi|^2}.$$

Polyakov action

$$\int \mathrm{D}\phi \mathrm{D}g \, e^{\int_{\Sigma} |\partial \phi|^2}.$$

• \rightsquigarrow integration over maps and metrics on Σ .

Polyakov action

$$\int \mathrm{D}\phi \mathrm{D}g \, e^{\int_{\Sigma} |\partial \phi|^2}$$

- \rightsquigarrow integration over maps and metrics on Σ .
- integration only over ϕ gives the sigma model.

Polyakov action

$$\int \mathrm{D}\phi \mathrm{D}g \, e^{\int_{\Sigma} |\partial \phi|^2}$$

- \rightsquigarrow integration over maps and metrics on Σ .
- integration only over ϕ gives the sigma model.
- supersymmetric models → make φ a superfield containing worldsheet bosons and left- and right-moving fermions.

• Observation: SUSY on the worldsheet constrains target space geometry.

 $^{^{}a}(2,2)$ because we want no loop corrections on the worldsheet

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?

^(2,2) because we want no loop corrections on the worldsheet

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data (I_+, I_-, g, H) .

^(2,2) because we want no loop corrections on the worldsheet

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data (I_+, I_-, g, H) .
- I_{\pm} : two complex structures $(I_{\pm}^2 = -1)$ for the left- and right-moving fermions.

^(2,2) because we want no loop corrections on the worldsheet

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data (I_+, I_-, g, H) .
- I_{\pm} : two complex structures $(I_{\pm}^2 = -1)$ for the left- and right-moving fermions.
- g: Riemannian metric on the target space, Hermitian with respect to I_{\pm} .

^(2,2) because we want no loop corrections on the worldsheet

- Observation: SUSY on the worldsheet constrains target space geometry.
- Question: What is the most general target space geometry for an $\mathcal{N}=(2,2)$ sigma model?
- Answer: bi-Hermitian geometry with data (I_+, I_-, g, H) .
- I_{\pm} : two complex structures $(I_{\pm}^2 = -1)$ for the left- and right-moving fermions.
- g: Riemannian metric on the target space, Hermitian with respect to I_{\pm} .
- H: 3-form field strength of a 2-form field B.

^(2,2) because we want no loop corrections on the worldsheet

• on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to *twist* the model to get a topological theory.

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to *twist* the model to get a topological theory.
- some of the fermions become worldsheet singlets.

 the theory becomes background independent.

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to *twist* the model to get a topological theory.
- ~> some of the fermions become worldsheet singlets.
 ~> the theory becomes background independent.
- \rightsquigarrow less information.

(in the same way as the de Rham complex $\Omega^*(X)$ contains more information then it's cohomology $H^*(X)$)

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to *twist* the model to get a topological theory.
- some of the fermions become worldsheet singlets.

 the theory becomes background independent.
- ~ less information.

(in the same way as the de Rham complex $\Omega^*(X)$ contains more information then it's cohomology $H^*(X)$)

• but

- on the worldsheet we have two conserved supercurrents and a U(1) R-symmetry current.
- Idea: Use the R-symmetry current to *twist* the model to get a topological theory.
- some of the fermions become worldsheet singlets.

 the theory becomes background independent.
- ~ less information.

(in the same way as the de Rham complex $\Omega^*(X)$ contains more information then it's cohomology $H^*(X)$)

• but computing physical observables can be reduced to geometrical questions.

Before the twist: WS fermions ψ_{\pm} , which can be split into (anti-)holomorphic components w.r.t. I_{\pm}

$$\mathcal{P}_{\pm}\psi_{\pm}, \overline{\mathcal{P}}_{\pm}\psi_{\pm}, \mathcal{P}_{\pm}\psi_{\pm}, \overline{\mathcal{P}}_{\pm}\psi_{\pm}, \overline{\mathcal{P}}_{\pm}\psi_{\pm},$$

where $\mathcal{P}_{\pm} = \frac{1}{2}(1 - iI_{\pm}), \overline{\mathcal{P}}_{\pm} = \frac{1}{2}(1 + iI_{\pm}).$

Before the twist: WS fermions ψ_{\pm} , which can be split into (anti-)holomorphic components w.r.t. I_{\pm}

$$\mathcal{P}_+\psi_+, \overline{\mathcal{P}}_+\psi_+, \mathcal{P}_-\psi_-, \overline{\mathcal{P}}_-\psi_-,$$

where $\mathcal{P}_{\pm} = \frac{1}{2}(1 - iI_{\pm})$, $\overline{\mathcal{P}}_{\pm} = \frac{1}{2}(1 + iI_{\pm})$.

This corresponds to a splitting of the (complexified) tangent bundle of the target space

$$TM_{\mathbb{C}} = TM_{+}^{1,0} \oplus TM_{+}^{0,1} \oplus TM_{-}^{1,0} \oplus TM_{-}^{0,1}$$

Twist: Mix the fermionic spin with the vectorial/axial U(1) current to get the topological A/B model.

Twist: Mix the fermionic spin with the vectorial/axial U(1) current to get the topological A/B model.

 $q_{V/A}$: vectorial/axial charge, J: spin before the twist, $J_{A/B}$: spin after the twist = $J + q_{V/A}/2$.

	q_V	q_A	J	J_A	J_B
$\mathcal{P}_+\psi_+$	-1	-1	$-\frac{1}{2}$	-1	-1
$\overline{\mathcal{P}}_+\psi_+$	+1	+1	$-\frac{1}{2}$	0	0
$\mathcal{P}\psi$	-1	+1	$+\frac{1}{2}$	0	+1
$\overline{\mathcal{P}}\psi$	+1	-1	$+\frac{1}{2}$	+1	0

After the twist: Scalar fermions

• A model: $\overline{\mathcal{P}}_+\psi_+$ and $\mathcal{P}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{1,0}$.

After the twist: Scalar fermions

• A model: $\overline{\mathcal{P}}_+\psi_+$ and $\mathcal{P}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{1,0}$.

• B model:
$$\overline{\mathcal{P}}_+\psi_+$$
 and $\overline{\mathcal{P}}_-\psi_-$,
which are sections of $TM^{0,1}_+$ and $TM^{0,1}_-$.

After the twist: Scalar fermions

• A model: $\overline{\mathcal{P}}_+\psi_+$ and $\mathcal{P}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{1,0}$.

• B model:
$$\overline{\mathcal{P}}_+\psi_+$$
 and $\overline{\mathcal{P}}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{0,1}$.

Standard approach: Identify I_{\pm} and combine the fields into sections of TM (A model) or $TM^{0,1}$ (B model). The A/B model depends only on the Kähler/complex structure moduli of the theory.

After the twist: Scalar fermions

• A model:
$$\overline{\mathcal{P}}_+\psi_+$$
 and $\mathcal{P}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{1,0}$.

• B model:
$$\overline{\mathcal{P}}_+\psi_+$$
 and $\overline{\mathcal{P}}_-\psi_-$,

which are sections of $TM_{+}^{0,1}$ and $TM_{-}^{0,1}$.

Standard approach: Identify I_{\pm} and combine the fields into sections of TM (A model) or $TM^{0,1}$ (B model). The A/B model depends only on the Kähler/complex structure moduli of the theory.

Note: A and B model are related by $I_{-} \leftrightarrow -I_{-}$.

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

	Standard	Generalized
	TM	$TM \oplus TM^*$
Elements	X	$X + \xi$
Structure group	GL(2d)	O(2d,2d)
With compl. str.	U(d)	U(d,d)
With metric	O(2d)	$O(2d) \times O(2d)$

Main idea: Consider not only the tangent bundle of a manifold, but the combination with the co-tangent bundle:

	Standard	Generalized
	TM	$TM \oplus TM^*$
Elements	X	$X + \xi$
Structure group	GL(2d)	O(2d,2d)
With compl. str.	U(d)	U(d,d)
With metric	O(2d)	$O(2d) \times O(2d)$

 \exists a natural inner product on $T\oplus T^*$ given by

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(X) + \eta(Y))$$

Generalized complex structures

• Generalized complex geometry interpolates between symplectic and complex geometry.

Generalized complex structures

- Generalized complex geometry interpolates between symplectic and complex geometry.
- Complex structure:

$$J:TM \to TM, \quad J^2 = -1,$$

Symplectic structure:

$$\omega: TM \to TM^*, \quad \omega^* = -\omega.$$

Generalized complex structures

- Generalized complex geometry interpolates between symplectic and complex geometry.
- Complex structure:

$$J:TM \to TM, \quad J^2 = -1,$$

Symplectic structure:

$$\omega: TM \to TM^*, \quad \omega^* = -\omega.$$

• A Generalized complex structure (GCS) \mathcal{J} can be defined as an endomorphism on $TM \oplus TM^*$, which satisfies

$$\mathcal{J}^2 = -1$$
 and $\mathcal{J}^* = -\mathcal{J}$.

Notation: Write an element of $T \oplus T^*$ as a vector $\begin{pmatrix} X \\ \xi \end{pmatrix}$.

Notation: Write an element of $T \oplus T^*$ as a vector $\begin{pmatrix} X \\ \xi \end{pmatrix}$.

$$\mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix} \quad \text{and} \quad \mathcal{J}_\omega = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$$

Limiting cases reproducing standard complex and symplectic structures.

Notation: Write an element of $T \oplus T^*$ as a vector $\begin{pmatrix} X \\ \xi \end{pmatrix}$.

$$\mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$
 and $\mathcal{J}_\omega = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric G ($G^2 = 1$) on $TM \oplus TM^*$ which commutes with \mathcal{J}

Notation: Write an element of $T \oplus T^*$ as a vector $\begin{pmatrix} X \\ \xi \end{pmatrix}$.

$$\mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$
 and $\mathcal{J}_\omega = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric $G(G^2 = 1)$ on $TM \oplus TM^*$ which commutes with \mathcal{J} \rightsquigarrow another GCS given by $G\mathcal{J}$.

Notation: Write an element of $T \oplus T^*$ as a vector $\begin{pmatrix} X \\ \xi \end{pmatrix}$.

$$\mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix}$$
 and $\mathcal{J}_\omega = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$

Limiting cases reproducing standard complex and symplectic structures.

Introduce an additional metric $G(G^2 = 1)$ on $TM \oplus TM^*$ which commutes with \mathcal{J} \rightsquigarrow another GCS given by $G\mathcal{J}$.

From a standard Kähler structure (g, J, ω) we get $\mathcal{J}_J, \mathcal{J}_\omega$ and

$$G = -\mathcal{J}_J \mathcal{J}_\omega.$$

Ringberg 10/27/04 - p.13/17

Define a generalized Kähler structure by

$$\mathcal{J}_{1/2} = \frac{1}{2} \begin{pmatrix} I_+ \pm I_- & -(\omega_+^{-1} \mp \omega_-^{-1}) \\ \omega_+ \mp \omega_- & -(I_+^T \pm I_-^T) \end{pmatrix}.$$

The data of a bi-Hermitian geometry can be reconstructed using $\omega_{\pm} = gI_{\pm}$.

Define a generalized Kähler structure by

$$\mathcal{J}_{1/2} = \frac{1}{2} \begin{pmatrix} I_+ \pm I_- & -(\omega_+^{-1} \mp \omega_-^{-1}) \\ \omega_+ \mp \omega_- & -(I_+^T \pm I_-^T) \end{pmatrix}.$$

The data of a bi-Hermitian geometry can be reconstructed using $\omega_{\pm} = gI_{\pm}$.

 \rightsquigarrow We can desribe the target space of the top. sigma models with a GKS.

Generalized B/A model:

$$\Psi_{1/2} := \frac{1}{2} (1 + i\mathcal{J}_{1/2}) \begin{pmatrix} \psi_+ + \psi_- \\ g(\psi_+ - \psi_-) \end{pmatrix}$$

Ringberg 10/27/04 - p.14/17

• Question: How to get the usual top. sigma models from the generalized ones?

- Question: How to get the usual top. sigma models from the generalized ones?
- Answer: From the generalized A or B model we get *both*. E.g. from the gen. B model we get the old B model by taking $I_+ = I_-$ and the old A model by $I_+ = -I_-$.

• Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$\mathcal{J}_1 \quad \longleftrightarrow \quad \mathcal{J}_2,$$

exchanges generalized A and B model.

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$\mathcal{J}_1 \quad \longleftrightarrow \quad \mathcal{J}_2,$$

exchanges generalized A and B model.

In the limit of I₊ = I₋ this exchanges the old A and B model.

- Mirror symmetry relates the top. A model on a manifold X to the top. B model on a (dual) manifold Y.
- Realization in the generalized setup:

$$\mathcal{J}_1 \quad \longleftrightarrow \quad \mathcal{J}_2,$$

exchanges generalized A and B model.

- In the limit of I₊ = I₋ this exchanges the old A and B model.
- Kähler and complex structure moduli are exchanged.

• Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?
- What about lifts to M-theory (G2 manifolds)?

- Generalized complex geometry seems to be a nice framework to describe $\mathcal{N}=(2,2)$ topological sigma models.
- Mirror symmetry relating A and B models can be understood from a geometrical point of view.
- Is it possible to construct explicit examples of generalized complex manifolds?
- What about the relation to "physical" string theory? Can we embed the setup to type IIA/B?
- What about lifts to M-theory (G2 manifolds)?
- Can we construct new types of topological branes using this framework?