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Introduction

What is string theory all about?

A theory of maps φ : Σ→ X from the 2d worldsheet to the
10d target space.

Σ X

We take X = R1,3 ×M6.
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Sigma models

• Polyakov action

∫
DφDg e

R
Σ
|∂φ|2 .

•  integration over maps and metrics on Σ.

• integration only over φ gives the sigma model.

• supersymmetric models  make φ a superfield
containing worldsheet bosons and left- and right-moving
fermions.
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Sigma models

• Observation: SUSY on the worldsheet constrains target
space geometry.

• Question: What is the most general target space
geometry for an N = (2, 2) sigma model? a

• Answer: bi-Hermitian geometry with data (I+, I−, g,H).

• I±: two complex structures (I2
± = −1) for the left- and

right-moving fermions.

• g: Riemannian metric on the target space, Hermitian
with respect to I±.

• H: 3-form field strength of a 2-form field B.

a(2,2) because we want no loop corrections on the worldsheet
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Topological sigma models

• on the worldsheet we have two conserved supercurrents
and a U(1) R-symmetry current.

• Idea: Use the R-symmetry current to twist the model to
get a topological theory.

•  some of the fermions become worldsheet singlets.
 the theory becomes background independent.

•  less information.
(in the same way as the de Rham complex Ω∗(X) contains more information

then it’s cohomology H∗(X))

• but computing physical observables can be reduced to
geometrical questions.
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Topological sigma models

Before the twist: WS fermions ψ±, which can be split into
(anti-)holomorphic components w.r.t. I±

P+ψ+,P+ψ+,P−ψ−,P−ψ−,

where P± = 1
2(1− iI±), P± = 1

2(1 + iI±).

This corresponds to a splitting of the (complexified) tangent
bundle of the target space

TMC = TM1,0
+ ⊕ TM0,1

+ ⊕ TM1,0
− ⊕ TM0,1

− .
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Topological sigma models

Twist: Mix the fermionic spin with the vectorial/axial U(1)
current to get the topological A/B model.

qV/A: vectorial/axial charge, J : spin before the twist, JA/B:

spin after the twist = J + qV/A/2.

qV qA J JA JB

P+ψ+ −1 −1 −1
2 −1 −1

P+ψ+ +1 +1 −1
2 0 0

P−ψ− −1 +1 +1
2 0 +1

P−ψ− +1 −1 +1
2 +1 0
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Topological sigma models

After the twist: Scalar fermions

• A model: P+ψ+ and P−ψ−,

which are sections of TM 0,1
+ and TM1,0

− .

• B model: P+ψ+ and P−ψ−,

which are sections of TM 0,1
+ and TM0,1

− .

Standard approach: Identify I± and combine the fields into
sections of TM (A model) or TM 0,1 (B model). The A/B
model depends only on the Kähler/complex structure moduli
of the theory.

Note: A and B model are related by I− ↔ −I−.
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Generalized complex geometry

Complex
SymplecticKähler

Generalized Complex
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Generalized complex geometry

Main idea: Consider not only the tangent bundle of a
manifold, but the combination with the co-tangent bundle:

Standard Generalized

TM TM ⊕ TM∗
Elements X X + ξ

Structure group GL(2d) O(2d, 2d)

With compl. str. U(d) U(d, d)

With metric O(2d) O(2d)×O(2d)

∃ a natural inner product on T ⊕ T ∗ given by

〈X + ξ, Y + η〉 =
1

2
(ξ(X) + η(Y ))
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Generalized complex structures

• Generalized complex geometry interpolates between
symplectic and complex geometry.

• Complex structure:

J : TM → TM, J2 = −1,

Symplectic structure:

ω : TM → TM∗, ω∗ = −ω.

• A Generalized complex structure (GCS) J can be
defined as an endomorphism on TM ⊕ TM ∗, which
satisfies

J 2 = −1 and J ∗ = −J .
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Generalized Kähler geometry

Notation: Write an element of T ⊕ T ∗ as a vector

(
X

ξ

)
.

JJ =

(
−J 0

0 J∗

)
and Jω =

(
0 −ω−1

ω 0

)

Limiting cases reproducing standard complex and symplectic
structures.

Introduce an additional metric G (G2 = 1) on TM ⊕ TM∗
which commutes with J
 another GCS given by GJ .

From a standard Kähler structure (g, J, ω) we get JJ ,Jω and

G = −JJJω.
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Generalized topological sigma models

Define a generalized Kähler structure by

J1/2 =
1

2

(
I+ ± I− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(IT+ ± IT−)

)
.

The data of a bi-Hermitian geometry can be reconstructed
using ω± = gI±.

 We can desribe the target space of the top. sigma models
with a GKS.

Generalized B/A model:

Ψ1/2 :=
1

2
(1 + iJ1/2)

(
ψ+ + ψ−

g(ψ+ − ψ−)

)
.
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Generalized topological sigma models
• Question: How to get the usual top. sigma models from

the generalized ones?

• Answer: From the generalized A or B model we get both.
E.g. from the gen. B model we get the old B model by
taking I+ = I− and the old A model by I+ = −I−.

J1 =
1

2

(
I+ + I− −(ω−1

+ − ω−1
− )

ω+ − ω− −(IT+ + IT−)

)

(
I 0

0 −IT

)

(
0 ω−1

ω 0

)

B

A
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Mirror symmetry

• Mirror symmetry relates the top. A model on a manifold
X to the top. B model on a (dual) manifold Y .

• Realization in the generalized setup:

J1 ←→ J2,

exchanges generalized A and B model.

• In the limit of I+ = I− this exchanges the old A and B
model.

• Kähler and complex structure moduli are exchanged.
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Conclusions and Outlook

• Generalized complex geometry seems to be a nice
framework to describe N = (2, 2) topological sigma
models.

• Mirror symmetry relating A and B models can be
understood from a geometrical point of view.

• Is it possible to construct explicit examples of
generalized complex manifolds?

• What about the relation to ”physical” string theory? Can
we embed the setup to type IIA/B?

• What about lifts to M-theory (G2 manifolds)?

• Can we construct new types of topological branes using
this framework?
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