Compactification of String/M-theory

- How to get rid of 6 and 7 dimensions?

Claus Jeschek

jeschek@mppmu.mpg.de

In cooperation with: Behrndt(LMU), Chiantese(HU-Berlin) and Gmeiner(MPI)

Supervision: Prof. Lüst

Ringberg-27-10-2004 - p.1/18

Contents

- Motivation
- M-theory: 11 = 4 + 7
- String Theory: 10 = 4 + 6
 (see Talk of Florian)
- Outlook

String/M-theory has several features:

 Strings/membranes are one/two dimensional objects

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes
- Good news: graviton is included

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes
- Good news: graviton is included
- Bad news: must live in ten/eleven dimensions

Limits of an unknown theory

Limits of an unknown theory

Back to our good old four dimensions

Way out:

- Split dimensions: direct-sum
 - M-theory: 11 = 4 + 7
 - String Theory: 10 = 4 + 6

• Choose tiny, compact internal space

• Is the internal space arbitrary or unique?

- Is the internal space arbitrary or unique?
- Can we characterize it?

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?
- Does physics dictate the shape?

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?
- Does physics dictate the shape?
- Vice versa: Can internal space dictate
 4-dim physics?

• Start from an action

- Start from an action
- Calculate SUSY variations

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed
- Set remaining SUSY-variations zero

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed
- Set remaining SUSY-variations zero

 \rightarrow solve eqns \equiv find vacuum manifold

M-theory: 11 = 4 + 7

if smallest length scale \gg Planck length then $\mbox{M-theory} \rightarrow d = 11 \ \mbox{SUGRA}$

Action for bosonic part:

$$S = \int \sqrt{g} R \cdot *1 - \frac{1}{2} F \wedge *F - \frac{1}{6} C \wedge F \wedge F$$

g is metric, R is scalar curvature C is 3-form potential, where locally F = dC

SUSY-variations

fields: metric q, 3-form C, gravitino Ψ_X \rightarrow calculate SUSY-variations \rightarrow only $\delta_{\varepsilon} \Psi_X$ is of interest (vacuum) $\delta_{\varepsilon}\Psi_X = \nabla^S_X \cdot \varepsilon = 0$ $\nabla_X^S \cdot \varepsilon \stackrel{!}{=} \nabla_X^{LC} \cdot \varepsilon + \frac{1}{1 \operatorname{AA}} \Big(X \,\lrcorner\, F - 8 \, X \wedge F \Big) \cdot \varepsilon$

 ε : SUSY-parameter (spinor in 11d)

Space of solutions

Bad news: no unique solution

Way out:

• How much SUSY do we want? Physical claim: $\mathcal{N} = 1$ in d = 4

Space of solutions

Bad news: no unique solution

Way out:

- How much SUSY do we want? Physical claim: $\mathcal{N} = 1$ in d = 4
- Make Ansatz: $\mathbb{R}^{1,3} \times M^7$ and F is only defined on M^7

- Theory defined on $M^{11} = \mathbb{R}^{1,3} \times M^7$

- Theory defined on $M^{11} = \mathbb{R}^{1,3} \times M^7$
- Claim: precisely $\mathcal{N} = 1$ in d = 4

- Theory defined on $M^{11} = \mathbb{R}^{1,3} \times M^7$
- Claim: precisely $\mathcal{N} = 1$ in d = 4
- Spinor has form: $\varepsilon = \chi \otimes \xi$

- Theory defined on $M^{11} = \mathbb{R}^{1,3} \times M^7$
- Claim: precisely $\mathcal{N} = 1$ in d = 4
- Spinor has form: $\varepsilon = \chi \otimes \xi$
- ${\cal F}$ is only defined on ${\cal M}^7$

- Theory defined on $M^{11} = \mathbb{R}^{1,3} \times M^7$
- Claim: precisely $\mathcal{N} = 1$ in d = 4
- Spinor has form: $\varepsilon = \chi \otimes \xi$
- ${\cal F}$ is only defined on ${\cal M}^7$
- SUSY (vacuum) variation is zero

$$0 = \nabla_X^{LC} \cdot \varepsilon + \frac{1}{144} \Big(X \,\lrcorner\, F - 8 \, X \wedge F \Big) \cdot \varepsilon$$

Easy going with F = 0

• Via the splitting $\varepsilon = \chi \otimes \xi$ we obtain

$$0 = \nabla_g \varepsilon = \chi \otimes \nabla_{g(M^7)} \xi \,,$$

where $abla_{\mathbb{R}^{1,3}}\chi = 0$

Easy going with F = 0

• Via the splitting $\varepsilon = \chi \otimes \xi$ we obtain

$$0 = \nabla_g \varepsilon = \chi \otimes \nabla_{g(M^7)} \xi \,,$$

where $abla_{\mathbb{R}^{1,3}}\chi=0$

• Original conditions ($\nabla_X \varepsilon = 0$, $\mathcal{N} = 1$), reduce to

$$abla_{g(M^7)}\xi = 0$$
 and $\mathcal{N} = 1 \ (d = 4)$

Easy going with F = 0

• Via the splitting $\varepsilon = \chi \otimes \xi$ we obtain

$$0 = \nabla_g \varepsilon = \chi \otimes \nabla_{g(M^7)} \xi \,,$$

where $abla_{\mathbb{R}^{1,3}}\chi=0$

• Original conditions ($\nabla_X \varepsilon = 0$, $\mathcal{N} = 1$), reduce to

$$\nabla_{g(M^7)}\xi = 0$$
 and $\mathcal{N} = 1 (d = 4)$

Equivalently: precisely one internal covariant constant spinor

 \rightarrow Study holonomy theory

Idea of holonomy

Let (M,g) be a Riemannian manifold with metric $g \rightarrow \text{Levi-Civitá connection } \nabla^{LC}$ exists

Parallel transport of a vector via ∇^{LC} :

geometrical picture

Idea of holonomy

Let (M,g) be a Riemannian manifold with metric $g \rightarrow \text{Levi-Civitá connection } \nabla^{LC}$ exists

Parallel transport of a vector via ∇^{LC} :

geometrical picture

Idea of holonomy

Let (M,g) be a Riemannian manifold with metric $g \rightarrow \text{Levi-Civitá connection } \nabla^{LC}$ exists

Parallel transport of a vector via ∇^{LC} :

holonomy group Hol measures difference \rightarrow group Hol characterize manifold

Example: take flat space \rightarrow *Hol*=identity

Q: Which holonomy group solves our problem?

• Oriented 7-manifold: Hol is at most SO(7)

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most SO(7)
- Here we parallel transport spinors $\xi \rightarrow Hol$ at most Spin(7)

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most SO(7)
- Here we parallel transport spinors $\xi \rightarrow Hol$ at most Spin(7)
- Spinor ξ lives in $\Delta = \mathbb{R}^8$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most SO(7)
- Here we parallel transport spinors $\xi \rightarrow Hol$ at most Spin(7)
- Spinor ξ lives in $\Delta = \mathbb{R}^8$
- We want to have exactly one invariant spinor

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most SO(7)
- Here we parallel transport spinors $\xi \rightarrow Hol$ at most Spin(7)
- Spinor ξ lives in $\Delta = \mathbb{R}^8$
- We want to have exactly one invariant spinor

A: group theory tells us $Hol = G_2$ does the job since we have: $\Delta \rightarrow 8 = 1 + 7$

Precisely
$$\mathcal{N} = 1$$
 in $d = 4$ if $M^{11} = \mathbb{R}^{1,3} \times M^7$
and M^7 has G_2 -holonomy

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• decompose 4-form F in G_2 -modules

$$F \to F^4 = F_1^4 \oplus F_7^4 \oplus F_{27}^4$$

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• decompose 4-form F in G_2 -modules

$$F \to F^4 = F_1^4 \oplus F_7^4 \oplus F_{27}^4$$

• introduce also $F_{ext}^4 = m \cdot vol_4$

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• decompose 4-form F in G_2 -modules

$$F \to F^4 = F_1^4 \oplus F_7^4 \oplus F_{27}^4$$

- introduce also $F_{ext}^4 = m \cdot vol_4$
- relax: $\mathbb{R}^{1,3} \rightarrow \max$. isotropic spaces

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• decompose 4-form F in G_2 -modules

$$F \to F^4 = F_1^4 \oplus F_7^4 \oplus F_{27}^4$$

- introduce also $F_{ext}^4 = m \cdot vol_4$
- relax: $\mathbb{R}^{1,3} \rightarrow \max$. isotropic spaces
- non-trivial metric: $g_{11} = e^{A(y)} (g_4 + g_7(y)), \quad A : fct$

• idea: interpret additional terms, e.g. F, by torsion T

 $T = T^* M \otimes \mathfrak{g}_2^{\perp} = X_1 \oplus X_7 \oplus X_{14} \oplus X_{27}$

• decompose 4-form F in G_2 -modules

$$F \to F^4 = F_1^4 \oplus F_7^4 \oplus F_{27}^4$$

- introduce also $F_{ext}^4 = m \cdot vol_4$
- relax: $\mathbb{R}^{1,3} \rightarrow \max$. isotropic spaces
- non-trivial metric: $g_{11} = e^{A(y)} (g_4 + g_7(y)), \quad A : fct$

Solution: weak G_2 -manifold $A = const, \quad F^4 = 0 \quad T = m \in X_1 \quad X_{2,3,4} = 0$

Outlook

- Topology of M^7 tells us e.g. # of generations
- include singularities \rightarrow YM-bundles, chiral fermions
- apply same procedure for string theories
- investigate duality transformation, e.g. mirror symmetry
- Topological sigma model (see Talk of Florian)

present work: string theory and generalized $G \times G$ -structure