Compactification of String/M-theory

- How to get rid of 6 and 7 dimensions?

Claus Jeschek

jeschek@mppmu.mpg.de

In cooperation with: Behrndt(LMU), Chiantese(HU-Berlin) and Gmeiner(MPI)

Supervision: Prof. Lüst

Contents

- Motivation
- M-theory: $11=4+7$
- String Theory: $10=4+6$
(see Talk of Florian)
- Outlook

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes
- Good news: graviton is included

Motivation

String/M-theory has several features:

- Strings/membranes are one/two dimensional objects
- Strings can be closed or open
- Quantization leads to spectrum
- Usual particles appear as zero-modes
- Good news: graviton is included
- Bad news: must live in ten/eleven dimensions

Limits of an unknown theory

Limits of an unknown theory

Back to our good old four dimensions

Way out:

- Split dimensions: direct-sum
- M-theory: $11=4+7$
- String Theory: $10=4+6$
- Choose tiny, compact internal space

Obvious questions

- Is the internal space arbitrary or unique?

Obvious questions

- Is the internal space arbitrary or unique?
- Can we characterize it?

Obvious questions

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?

Obvious questions

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?
- Does physics dictate the shape?

Obvious questions

- Is the internal space arbitrary or unique?
- Can we characterize it?
- How can we characterize it?
- Does physics dictate the shape?
- Vice versa: Can internal space dictate 4-dim physics?

SUSY-vacuum: A recipe

- Start from an action

SUSY-vacuum: A recipe

- Start from an action
- Calculate SUSY variations

SUSY-vacuum: A recipe

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed

SUSY-vacuum: A recipe

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed
- Set remaining SUSY-variations zero

SUSY-vacuum: A recipe

- Start from an action
- Calculate SUSY variations
- Vacuum-case: only bosons allowed
- Set remaining SUSY-variations zero
\rightarrow solve eqns \equiv find vacuum manifold

M-theory: $11=4+7$

if smallest length scale \gg Planck length then

$$
\text { M-theory } \rightarrow d=11 \text { SUGRA }
$$

Action for bosonic part:
$S=\int \sqrt{g} R \cdot * 1-\frac{1}{2} F \wedge * F-\frac{1}{6} C \wedge F \wedge F$
g is metric, R is scalar curvature
C is 3-form potential, where locally $F=d C$

SUSY-variations

fields: metric g, 3-form C, gravitino Ψ_{X} \rightarrow calculate SUSY-variations
\rightarrow only $\delta_{\varepsilon} \Psi_{X}$ is of interest (vacuum)

$$
\delta_{\varepsilon} \Psi_{X}=\nabla_{X}^{S} \cdot \varepsilon=0
$$

$\left.\nabla_{X}^{S} \cdot \varepsilon \stackrel{!}{=} \nabla_{X}^{L C} \cdot \varepsilon+\frac{1}{144}(X\lrcorner F-8 X \wedge F\right) \cdot \varepsilon$
ε : SUSY-parameter (spinor in 11d)

Space of solutions

Bad news: no unique solution
Way out:

- How much SUSY do we want?

Physical claim: $\mathcal{N}=1$ in $d=4$

Space of solutions

Bad news: no unique solution
Way out:

- How much SUSY do we want?

Physical claim: $\mathcal{N}=1$ in $d=4$

- Make Ansatz: $\quad \mathbb{R}^{1,3} \times M^{7}$
and F is only defined on M^{7}

Summarize conditions

- Theory defined on $M^{11}=\mathbb{R}^{1,3} \times M^{7}$

Summarize conditions

- Theory defined on $M^{11}=\mathbb{R}^{1,3} \times M^{7}$
- Claim: precisely $\mathcal{N}=1$ in $d=4$

Summarize conditions

- Theory defined on $M^{11}=\mathbb{R}^{1,3} \times M^{7}$
- Claim: precisely $\mathcal{N}=1$ in $d=4$
- Spinor has form: $\varepsilon=\chi \otimes \xi$

Summarize conditions

- Theory defined on $M^{11}=\mathbb{R}^{1,3} \times M^{7}$
- Claim: precisely $\mathcal{N}=1$ in $d=4$
- Spinor has form: $\varepsilon=\chi \otimes \xi$
- F is only defined on M^{7}

Summarize conditions

- Theory defined on $M^{11}=\mathbb{R}^{1,3} \times M^{7}$
- Claim: precisely $\mathcal{N}=1$ in $d=4$
- Spinor has form: $\varepsilon=\chi \otimes \xi$
- F is only defined on M^{7}
- SUSY (vacuum) variation is zero

$$
\left.0=\nabla_{X}^{L C} \cdot \varepsilon+\frac{1}{144}(X\lrcorner F-8 X \wedge F\right) \cdot \varepsilon
$$

Easy going with $F=0$

- Via the splitting $\varepsilon=\chi \otimes \xi$ we obtain

$$
0=\nabla_{g} \varepsilon=\chi \otimes \nabla_{g\left(M^{7}\right)} \xi
$$

where $\nabla_{\mathbb{R}^{1,3}} \chi=0$

Easy going with $F=0$

- Via the splitting $\varepsilon=\chi \otimes \xi$ we obtain

$$
0=\nabla_{g} \varepsilon=\chi \otimes \nabla_{g\left(M^{7}\right)} \xi
$$

where $\nabla_{\mathbb{R}^{1,3}} \chi=0$

- Original conditions $\left(\nabla_{X} \varepsilon=0, \mathcal{N}=1\right)$, reduce to

$$
\nabla_{g\left(M^{7}\right)} \xi=0 \quad \text { and } \quad \mathcal{N}=1(d=4)
$$

Easy going with $F=0$

- Via the splitting $\varepsilon=\chi \otimes \xi$ we obtain

$$
0=\nabla_{g} \varepsilon=\chi \otimes \nabla_{g\left(M^{7}\right)} \xi
$$

where $\nabla_{\mathbb{R}^{1,3}} \chi=0$

- Original conditions $\left(\nabla_{X} \varepsilon=0, \mathcal{N}=1\right)$, reduce to

$$
\nabla_{g\left(M^{7}\right)} \xi=0 \quad \text { and } \quad \mathcal{N}=1(d=4)
$$

Equivalently: precisely one internal covariant constant spinor \rightarrow Study holonomy theory

Idea of holonomy

Let (M, g) be a Riemannian manifold with metric g
\rightarrow Levi-Civitá connection $\nabla^{L C}$ exists
Parallel transport of a vector via $\nabla^{L C}$:

Idea of holonomy

Let (M, g) be a Riemannian manifold with metric g
\rightarrow Levi-Civitá connection $\nabla^{L C}$ exists
Parallel transport of a vector via $\nabla^{L C}$:

Idea of holonomy

Let (M, g) be a Riemannian manifold with metric g
\rightarrow Levi-Civitá connection $\nabla^{L C}$ exists
Parallel transport of a vector via $\nabla^{L C}$:

holonomy group Hol measures difference
\rightarrow group Hol characterize manifold
Example: take flat space \rightarrow Hol=identity

Back to our problem $F=0$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most $S O(7)$

Back to our problem $F=0$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most $S O(7)$
- Here we parallel transport spinors ξ
$\rightarrow \mathrm{Hol}$ at most $\operatorname{Spin}(7)$

Back to our problem $F=0$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most $S O(7)$
- Here we parallel transport spinors ξ
$\rightarrow \mathrm{Hol}$ at most $\operatorname{Spin}(7)$
- Spinor ξ lives in $\Delta=\mathbb{R}^{8}$

Back to our problem $F=0$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most $S O(7)$
- Here we parallel transport spinors ξ
\rightarrow Hol at most $\operatorname{Spin}(7)$
- Spinor ξ lives in $\Delta=\mathbb{R}^{8}$
- We want to have exactly one invariant spinor

Back to our problem $F=0$

Q: Which holonomy group solves our problem?

- Oriented 7-manifold: Hol is at most $S O(7)$
- Here we parallel transport spinors ξ
$\rightarrow \mathrm{Hol}$ at most $\operatorname{Spin}(7)$
- Spinor ξ lives in $\Delta=\mathbb{R}^{8}$
- We want to have exactly one invariant spinor

A: group theory tells us $\mathrm{Hol}=G_{2}$ does the job since we have: $\quad \Delta \rightarrow 8=1+7$

$$
\begin{aligned}
& \text { Precisely } \mathcal{N}=1 \text { in } d=4 \text { if } M^{11}=\mathbb{R}^{1,3} \times M^{7} \\
& \text { and } M^{7} \text { has } G_{2} \text {-holonomy }
\end{aligned}
$$

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

- decompose 4-form F in G_{2}-modules

$$
F \rightarrow F^{4}=F_{1}^{4} \oplus F_{7}^{4} \oplus F_{27}^{4}
$$

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

- decompose 4-form F in G_{2}-modules

$$
F \rightarrow F^{4}=F_{1}^{4} \oplus F_{7}^{4} \oplus F_{27}^{4}
$$

- introduce also $F_{e x t}^{4}=m \cdot$ vol $_{4}$

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

- decompose 4-form F in G_{2}-modules

$$
F \rightarrow F^{4}=F_{1}^{4} \oplus F_{7}^{4} \oplus F_{27}^{4}
$$

- introduce also $F_{\text {ext }}^{4}=m \cdot$ vol $_{4}$
- relax: $\mathbb{R}^{1,3} \rightarrow$ max. isotropic spaces

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

- decompose 4-form F in G_{2}-modules

$$
F \rightarrow F^{4}=F_{1}^{4} \oplus F_{7}^{4} \oplus F_{27}^{4}
$$

- introduce also $F_{\text {ext }}^{4}=m \cdot$ vol $_{4}$
- relax: $\mathbb{R}^{1,3} \rightarrow$ max. isotropic spaces
- non-trivial metric: $g_{11}=e^{A(y)}\left(g_{4}+g_{7}(y)\right), \quad A: f c t$

More General: $F \neq 0$

- idea: interpret additional terms, e.g. F, by torsion T

$$
T=T^{*} M \otimes \mathfrak{g}_{2}^{\perp}=X_{1} \oplus X_{7} \oplus X_{14} \oplus X_{27}
$$

- decompose 4-form F in G_{2}-modules

$$
F \rightarrow F^{4}=F_{1}^{4} \oplus F_{7}^{4} \oplus F_{27}^{4}
$$

- introduce also $F_{\text {ext }}^{4}=m \cdot$ vol $_{4}$
- relax: $\mathbb{R}^{1,3} \rightarrow$ max. isotropic spaces
- non-trivial metric: $g_{11}=e^{A(y)}\left(g_{4}+g_{7}(y)\right), \quad A: f c t$

Solution: weak G_{2}-manifold

$$
A=\text { const }, \quad F^{4}=0 \quad T=m \in X_{1} \quad X_{2,3,4}=0
$$

Outlook

- Topology of M^{7} tells us e.g. \# of generations
- include singularities \rightarrow YM-bundles, chiral fermions
- apply same procedure for string theories
- investigate duality transformation, e.g. mirror symmetry
- Topological sigma model (see Talk of Florian)
present work: string theory and generalized $G \times G$-structure

