Four-fermion production at the $\gamma\gamma$ Collider

•

Axel Bredenstein

in collaboration with Stefan Dittmaier und Markus Roth

Max-Planck-Institut für Physik, Munich

Oktober 28, 2004

mainly based on Eur. Phys. J. C 36 (2004) 341 [arXiv:hep-ph/0405169]

Contents

Lowest-order predictions:

Calculation of $\gamma \gamma \rightarrow 4f$ und $\gamma \gamma \rightarrow 4f \gamma$ in lowest order Construction of a Monte Carlo generator Anomalous couplings, Effective Higgs coupling,...

Radiative Corrections:

Methods for treating real corrections

$\gamma\gamma$ collider

- Option at the linear collider
- Photons are produced via Compton backscattering off electrons
- Energies and luminosities $\sim 80\%$ of corresponding ${\rm e^+e^-}$ collision
- however: γ energy distribution

Motivation

$\gamma\gamma \to WW$

- one of the largest cross sections
- contains gauge-boson couplings γWW and γγWW, insight into EW sector of SM, limits on anomalous couplings
- if $M_{\rm H} \gtrsim 160 \,{\rm GeV} \Rightarrow \gamma\gamma \rightarrow {\rm H} \rightarrow {\rm WW}$ possible through loops of charged massive particles
- sensitive to extra dimensions

Motivation

W bosons are unstable $\Rightarrow \gamma\gamma \rightarrow \mathrm{WW} \rightarrow 4f$ ("W-pair signal diagrams")

Experimental precision requires

- inclusion of single and non-resonant diagrams ("background diagrams") in lowest order $O(\Gamma_W/M_W)$, $O(\Gamma_W/M_W)^2$ $\Rightarrow \gamma\gamma \rightarrow 4f$
- inclusion of radiative corrections $\mathcal{O}(\alpha) \sim \mathcal{O}(\Gamma_W/M_W)$

 $\gamma\gamma
ightarrow 4 f\gamma$:

Building block for real corrections to $\gamma\gamma \to \mathrm{WW} \to 4f$

Existing studies:

 $\gamma\gamma \rightarrow 4f$: Moretti '96; Baillargeon et al. '97; Boos, Ohl '97

Amplitudes

- Helicity amplitudes
- Weyl—van-der-Waerden formalism
- fermion masses neglected

neutral current (NC)

gluon-exchange diagrams

representative final states

final state	reaction type	$\gamma\gamma ightarrow$	
leptonic	$\mathbf{C}\mathbf{C}$	$e^- \bar{\nu}_e \nu_\mu \mu^+$	
	NC(a)	$e^-e^+\nu_\mu\bar{\nu}_\mu$	
		$e^-e^+\mu^-\mu^+$	
	NC(b)	$e^-e^+e^-e^+$	
	$\rm CC/NC$	$e^-e^+\nu_e\bar{\nu}_e$	
semi-leptonic	CC(c)	$e^- \bar{\nu}_e u \bar{d}$	
	NC(a)	$ u_{ m e} \bar{ u}_{ m e} { m u} \bar{ m u}$	
		$ u_{ m e} \bar{ u}_{ m e} { m d} \bar{ m d}$	
		$e^-e^+u\bar{u}$	
		$e^-e^+d\bar{d}$	
hadronic	$\mathbf{C}\mathbf{C}$	$u \bar{d} s \bar{c}$	
	NC(a)	uūcē	
	NC(a)	$u\bar{u}s\bar{s}$	
	NC(a)	$d\bar{d}s\bar{s}$	
	NC(b)	uūuū	
	NC(b)	$d\bar{d}d\bar{d}$	
	$\rm CC/NC$	uūdā	

Amplitudes

diagrams: 6 ($e^-e^+
u_\mu ar{
u}_\mu$) to 588 ($uar{u}dar{d}+\gamma$)

 $\gamma\gamma \rightarrow 4f$: calculation with general gauge spinor of γ , drops out in the end

use of discrete symmetries

 \rightarrow only 2 independent helicity ampl. for $\gamma\gamma\rightarrow 4f$

gluon diagrams similar to NC diagrams, add colour structure

check against Madgraph (Stelzer, Long '94)

Phase-space integration

Problem: rich peaking structure of integrand "importance sampling" : more points near peaks RacoonWW Denner,Dittmaier,Roth,Wackeroth '01

$$\int \underbrace{dx}_{\downarrow} f(x) = \int dx \, g(x) \frac{f(x)}{g(x)} = \int dy \, \underbrace{\frac{f(x(y))}{g(x(y))}}_{u(x(y))}$$

random numbers

"weight" $\sim {\rm const}$

 $\int_0^x d\bar{x} g(\bar{x}) = y(x)$: "mapping" \rightarrow integrand flattened many Feynman diagrams/propagators \rightarrow "multi-channel"

one phase-space generator per diagram with appropriate "mapping"

Photon spectrum (CompAZ (Zarnecki '02; Telnov '95; Chen et al. '95)): $d\sigma = \int_0^1 dx_1 \int_0^1 dx_2 f(x_1) f(x_2) d\sigma(x_1 P_1, x_2 P_2)$ "stratified sampling" + adaptive optimization

 $Comparison \ with \ Whizard \& Madgraph \ ({\tt Kilian '01; Stelzer, Long '94}) \rightarrow good \ agreement$

Anomalous Couplings

General approach in search for new physics:

Effective Lagrangian: low energy limit of theory beyond SM, deviation of SM Lagrangian in terms of new operators

Example: triple couplings induced via dimension-6 operators assumption: symmetries of SM are respected

$$\mathcal{L}_{CC}^{ATGC} = ig_1 \frac{\alpha_{B\phi}}{M_W^2} (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi) - ig_2 \frac{\alpha_W \phi}{M_W^2} (D_\mu \Phi)^{\dagger} \boldsymbol{\sigma} \cdot \mathbf{W}^{\mu\nu} (D_\nu \Phi) - g_2 \frac{\alpha_W}{6M_W^2} \mathbf{W}^{\mu}{}_{\nu} \cdot (\mathbf{W}^{\nu}{}_{\rho} \times \mathbf{W}^{\rho}{}_{\mu}),$$

 $\rightarrow \gamma WW$ (and related $\gamma \gamma WW$) coefficients are related to $\Delta \kappa_{\gamma}$ and λ_{γ} (LEP2)

Anomalous triple couplings

 $\gamma \gamma \rightarrow 4f$ all semi-leptonic final states photon spectrum included $\sqrt{s_{ee}} = 500 \,\text{GeV} \quad \int L dt = 100 \,\text{fb}^{-1} \quad \chi^2 = 1 \quad \chi^2 \equiv \frac{(N(a_i) - N_{\text{SM}})^2}{N_{\text{SM}}}$

 $\label{eq:algo} \rightarrow \mbox{ large interference with SM amplitude} \\ \mbox{expected limits comparable to e^+e^--mode $(see also $Baillargeon et al. '97;$Bozovic-Jelisavcic et al. '02$} \\ \mbox{full study requires consideration of distributions} } \end{cases}$

Anomalous quartic couplings

Four-fermion production at the $\gamma\gamma$ Collider – 11/21

Effective Higgs coupling

In the SM through radiative corrections

Calculate $g_{\gamma\gamma H}$ by matching to SM radiative corrections at $s = M_{\rm H}^2$ Motivation: enhanced at $s \sim M_{\rm H}^2$, result gauge invariant

Distributions

Invariant mass and production angle of the W^+ boson in $\gamma\gamma \rightarrow e^- \bar{\nu}_e u \bar{d}$

Distributions

Energy and production angle of e^- and \bar{d} in $\gamma\gamma\to e^-\bar{\nu}_e u\bar{d}$

Convolution over photon spectrum changes energy and angular distributions due to the effective polarisation of the $\gamma\gamma$ system

Finite gauge-boson width

fixed width:
$$P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma}$$

step width: $P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma\theta(p^2)}$
running width: $P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma\frac{p^2}{M^2}\theta(p^2)}$
complex-mass scheme: $M^2 \to M^2 - iM\Gamma$ (e.g. in $\cos \theta_W = \frac{M_W}{M}$) gauge invariant

 M_Z ' VV Denner, Dittmaier, Roth, Wackeroth et al. '99

For $\gamma \gamma \rightarrow 4f(\gamma)$ (massless fermions and non-linear gauge) fixed width equivalent to complex-mass scheme

$\sigma(\gamma\gamma \to e^- \bar{\nu}_e \nu_\mu \mu^+ \gamma)$						
$\sqrt{s_{\gamma\gamma}} [\mathrm{GeV}]$	500	800	1000	2000	10000	
fixed width	39.230(45)	47.740(73)	49.781(91)	43.98(18)	4.32(23)	
step width	39.253(45)	47.781(73)	49.881(96)	44.01(18)	4.31(24)	
running width	39.251(49)	47.781(74)	49.898(95)	44.48(22)	(10.83(28))	
complex mass	39.221(45)	47.730(73)	49.770(91)	43.97(18)	4.31(23)	

Double-pole approximation

Naive W-pair signal:

only diagrams with two resonant W propagators (not gauge invariant) not sufficient

DPA = signal + "on-shell projection" gauge invariant uncertainty of $\mathcal{O}(\Gamma_{\rm W}/M_{\rm W}) \sim 1-3\%$ breakdown at WW threshold

→ promising approach: radiative corrections in DPA uncertainty of $\mathcal{O}(\alpha/\pi \times \Gamma_{\rm W}/M_{\rm W}) \sim 0.1 - 0.5\%$

Real corrections

Hard photon: detector cuts (minimal energy and minimal angle) real corrections: Bloch-Nordsieck theorem: cancellation together with virtual corrections

However: Problem in numerical integration, regularization needed, large cancellations

$$\sigma = \int \mathrm{d}\phi_{4f} \, |\mathcal{M}_{\mathrm{virt}}|^2 + \int \mathrm{d}\phi_{4f\gamma} \, |\mathcal{M}_{\mathrm{real}}|^2$$

Solution: Treat singular regions analytically

Two approaches: Phase-space slicing and subtraction

Phase-space slicing

Procedure:

• Decompose phase space ($\phi_{4f\gamma}$) into singular and non-singular regions, singular region: $E_{\gamma} < \Delta E$ or $\theta(\gamma, f_i) < \Delta \theta$ dependence on cut-off parameters $\Delta E, \Delta \theta$

 $d\phi_{4f\gamma} |\mathcal{M}_{\text{real}}|^2 = d\phi_{4f\gamma}^{\text{sing}} |\mathcal{M}_{\text{real,sing}}|^2 + d\phi_{4f\gamma}^{\text{finite}} |\mathcal{M}_{\text{real,finite}}|^2$

• In soft and collinear limit factorization: $d\phi_{4f\gamma}^{sing} = d\phi_{4f}d\phi_{\gamma}, \quad |\mathcal{M}_{real,sing}|^2 = |\mathcal{M}_{Born}^{4f}|^2 f(k),$ integrate $d\phi_{\gamma}f(k)$ over photon momentum k analytically,

4*f* part with no or invisible photon: $\int d\phi_{4f} \left(|\mathcal{M}_{virt}|^2 + \int d\phi_{\gamma} |\mathcal{M}_{real,sing}|^2 \right)$ 4*f* γ part with visible photon: $\int d\phi_{4f\gamma} |\mathcal{M}_{real,finite}|^2$

Slicing

•

similar for the angular cut $\Delta \theta$

Subtraction

Basic idea: add and subtract the same quantity

$$\begin{aligned} \mathrm{d}\phi_{4f} |\mathcal{M}_{\mathrm{virt}}|^2 + \mathrm{d}\phi_{4f\gamma} |\mathcal{M}_{\mathrm{sub}}|^2 + \mathrm{d}\phi_{4f\gamma} |\mathcal{M}_{\mathrm{real}}|^2 - \mathrm{d}\phi_{4f\gamma} |\mathcal{M}_{\mathrm{sub}}|^2 \\ |\mathcal{M}_{\mathrm{sub}}|^2 &\sim |\mathcal{M}_{\mathrm{real}}|^2 \quad \text{for} \quad k \to 0 \quad \text{or} \quad q_i k \to 0 \\ &\to \int \mathrm{d}\phi_{4f\gamma} \left(|\mathcal{M}_{\mathrm{real}}|^2 - |\mathcal{M}_{\mathrm{sub}}|^2 \right) \quad \text{is finite} \end{aligned}$$

define mapping
$$\tilde{\phi}_{4f} \to \phi_{4f\gamma}$$
 such that
 $q_i \underset{k \to 0}{\sim} \tilde{q_i}, \quad q_i + k \underset{kq_i \to 0}{\sim} \tilde{q_i}, \quad q_j \underset{kq_i \to 0}{\sim} \tilde{q_i}$

evaluate process independent function $\int d\phi_{\gamma} |\mathcal{M}_{sub}|^2$ $\rightarrow \int d\phi_{4f} \left(|\mathcal{M}_{virt}|^2 + \int d\phi_{\gamma} |\mathcal{M}_{sub}|^2 \right)$ is finite

In general: statistical uncertainty smaller than with slicing, construction more involved, but can be done once and for all Explicit algorithm/method: dipole subtraction Catani,Seymour '96; Dittmaier '99; Roth '99

Summary

- Relevance of $\gamma\gamma \rightarrow WW$ due to its high cross section
- Monte Carlo generator with multi-channel Monte Carlo integration
 - Calculation of Born amplitudes for $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f\gamma$
 - Inclusion of a realistic photon spectrum
 - Anomalous couplings, Higgs resonance
- Work in progress
 - Double-pole approximation is a promising approach for radiative corrections (cf. RacoonWW)
 - Slicing / Subtraction: two approaches for dealing with soft and collinear divergencies

