The feasibility study of Gamma Ray Bursts (GRBs) detection by MAGIC Telescope

Outline

- About Gamma Ray Bursts
- About MAGIC
- About toy simulation
- Result of our simulation

27 - 29 October

Ca

Additional physics

Satoko Mizobuchi

for MAGIC collaboration

The energy range

The MAGIC sensitivity and expected prompt GRB spectra

Information of GRBs detected by BATSE

Expected spectrum of GRBs

GRB Simulation method

Toy Simulation

Estimation of gamma-ray rate at MAGIC energy

- 1. BATSE GRB Current Catalogue (2702 bursts)
 - -Fluence
 - -Duration time
 - -Light curve (Time Profile)

- Assume Power law index -1.9,-2.2 and -2.5 between 300keV and 40GeV energy, estimate Gamma Ray flux at 10-20 GeV, 20-40 GeV energy bins.
- 3. Convolute MAGIC acceptance with Gamma Ray flux at 10-20GeV, and 20-40GeV
- 4. Add Expected Hadron shower rates 20Hz, and 40Hz in 10-20GeV and 20-40GeV energy bin.

Light curve of GRB921017 (Fluence = $1.9 \times 10^{5} \text{eV/cm}^{2}$)

Light curve of GRB991210 (Fluence = 5.0×10^{6} eV/cm2)

GRB event rate with MAGIC

Detection capability with MAGIC Telescope

Quantum Gravity - Example -

Conclusions

Detection capability

> 24% (10GeV-40GeV & index = -2.2)

•≥ 1.0 bursts/year

The next step:

 Improvement of simulation taking into account the IR absorption

New analysis method for GRBs (> 10GeV)

- imaging analysis for hadron rejection
- time correlation study between satellite data and MAGIC data
- We wait for SWIFT satellite (November, 2004)
- With HPD, we improve our sensitivity by two times

