Status of Cell Weighting with Calibration Hits

MPI HEC group meeting

Sven Menke, Pavel Stavina MPI München

8. Nov 2004, MPI

- Calibration Hits for CTB 2002 (Pavol Strizenec)
 - MC status
 - reconstruction status

Cell Weights

- what to include (LAr, Absorber, Dead material?)
- choice of x-Axis (function of energy density)
- Application of the weights to data and MC
- Conclusions/Outlook

Status of Calibration Hits for CTB02

A hadronic shower consists of

- EM energy (e.g. $\pi^0 \rightarrow \gamma\gamma$) O(50 %)
- visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25 %)
- invisible energy (e.g. breakup of nuclei and nuclear excitation)
 O(25 %)
- escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations
- Data to the right is taken from Pavol's simulated files
 - contains "calibration hits" in the 4 energy categories for
 - active material
 - absorber material
 - dead material
 - QGSP and LHEP physics lists
 - π^- and e⁻ from 10 GeV to 200 GeV at 3 points with 2000 (1000) events per π^- (e⁻) energy, physics list and point
 - Cu in front of HEC I and HEC II and absorber areas outside electrode boundaries are counted as dead material

Reconstruction with added noise like for real data is done

Cell Weighting with MC

$$E'_{cell} = w E_{cell}$$

$$w = \left(E^{em}_{cell} + E^{non-em vis}_{cell} + E^{non-em invis}_{cell} + E^{escaped}_{cell} \right) / \left(E^{em}_{cell} + E^{non-em vis}_{cell} \right)$$

start again with "3D"-clustering and splitting to define cluster-level quantities the weights might depend on

- energy and energy density
- cluster shape
- distance of the cell from shower axis, ...
- for test beam data use sum of "2D"-clusters "3D"-cluster
- take cluster energy on EM scale as start value
- interpolate weights from MC according to cluster energy
- apply cell weights and re-calculate cluster energy
- iterate

3

Cell Weighting with MC > Choice of Variables

- include absorber in weight ratio
 - no dependency on sampling ratio
 - corrects for invisible energy only
 - electron weights are at 1
- Pavel tried many choices for the x-axis
 - function of $E_{cell}^{with noise} / V_{cell}$ for every layer
 - scaled by $1/E_{beam}$ or $1/InE_{beam}$ for better interpolation
 - modified by (optional) non-linear terms

S. Menke, MPI München

Status of Cell Weighting with Calibration Hits

Application of the Weihgts to Data and MC

- > the following plots are for $x = E_{cell}^{with noise} / V_{cell} \times 1 / \log E_{clus}$
- examples show (normalized) cluster energies for 80 GeV π^- before and after the weighting itration
 - in red before the iteration (em)
 - in blue after the iteration (w)
 - usually 2 iterations are enough

Application of the Weihgts to Data and MC > Resolution

first shot gives

- data: $\sigma_E / E = 87.6 \% / \sqrt{E (GeV)} \oplus 3.2 \%$
- MC: $\sigma_E / E = 77.2 \% / \sqrt{E (\text{GeV})} \oplus 3.2 \%$
- both including noise
- need to check linearity
- need to check electrons

Conclusions

Calibration Hits seem to work

- simulation
- reconstruction
- weight definition
- application to MC and data
- First look at resolution gives similar result to cluster weights in NIM paper
 - and for those we did not iterate, but took the beam energy as input!
- Hope to get more results for High Tatra

