

Halbleiterlabor der Max-Planck-Institute

Physik

Development of Silicon Detectors for Particle and Astroparticle Physics Experiments

MPI Halbleiterlabor

Halbleiterlabor für Physik und extraterrestrisch

Complete design and manufacturing chain

- » Facilities for Layout and Simulation of Semiconductor Devices
- » Production of Silicon Detectors
- » Mounting and Tests
- » Special Features:
- » Processing of ultra-pure silicon wafers (10¹² impurites/cm³)
- » Double sided wafer processing
- » Wafer scale detectors (up to 50 cm² area)

Range of Devices

Device

Project (WHI, MPE)

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Silicon Strip Detectors, passive Pixel Detectors ATLAS

design and prototyping production in industry quality control

pn-CCD

for imaging X-Ray (and optical) detection frame store CCDs

Silicon-Drift-Detectors

X-ray spectrometers many design derivatives: arrays integrated amplification (DEPFET) gated diodes

Active Pixel Detectors (DEPFET)

for X-ray imaging and tracking detectors

H.-G. Moser Munich 13.12.2004

Silicon Photomultipliers (R&D project)

single photon detection

XMM/Newton ROSITA/DUO CAST

Siddharta DRAGO FELIX Muon Cooling

XEUS ILC (TESLA)

MAGIC, EUSO

Silicon Stripdetector: ATLAS SCT

- Radiation tolerant up to 3x10¹⁴ p/cm²
- p-on-n single sided detectors
- 285 micron 2-8 kOhm
- 4" substrate
- Barrel: 64x64 mm²
- Forward: wedge shaped (5 shapes)
- 768 readout strips with ca 80 μ m pitch
- No intermediate strips
- » AC coupled strips
- » Polysilicon or implanted bias resistors
- » Multiguardring structure to ensure stability up to 500 V
- » Ca. 20000 needed
- » 3100 produced CIS

competed, however, some problems with properties of passivation layers:

High resisitivity of passivation layer leads to:

Early breakdown (<450V) if operated in N2 atmosphere (10%-20% of detectors affected)

H.-G. Moser Munich 13.12.2004 Noise bumps due to strips shorted by surface charges Cured by treatment with ionized air

Future: detectors for Super-LHC ???

Silicon Drift Detectors

Large detection area Low capacitance => Low noise Integrated Transistor for first amplification Can be produced in many shapes Many other detectors based on this principle

H.-G. Moser Munich 13.12.2004

Projects: SIDDHARTA (Kaonic Atoms); Muon Cooling

Example: Mars Rover

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische **Physik**

H.-G. Moser Munich 13.12.2004

Silicon Drift Detectors for

APXS X-ray flourescence spectrometer for MPI fur Kosmochemie, Mainz

mission profile

- 2 independent mobile landers "Spirit" & "Opportunity"
- arrived 04./25.01.04

Muon Collider: Frictional Cooling Experiment

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

H.-G. Moser

Munich

13.12.2004

Muon Collider:

- No synchrotron problem better than electron
- Point particle better than proton
- But, τ=2.2 10⁻⁶ s, so
- need μ production, cooling, acceleration, within very short time !! We focus on cooling.

Gated Drift Diode

In drift diodes: t_0 infomation is missing: no spatial resolution. Modulation of drift fields allows to store charge temporarily. Drift starts if potential walls are removed. Back side contacts can serve as trigger.

Application: Medical Imaging (DRAGO, in production)

back side

(p-side)

T_{drift}

clock

onization

time-of-incidence

t

Pn-CCDs

Like in CMOS CCDs (digital cameras) the charge is stored between potential walls and shifted by periodically modifying them Unlike in CMOS CCDs the complete bulk is depleted and the CCD is sensitive to X-rays Disadvantage: out of time events

Application in XMM/Newton

Astronomy:

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

X-ray CCDs (XMM-Newton): in orbit since Dec 1999 taking data operation support and surveillance

World's largest X-ray CCD Flawless operation since 5 vears

APXS

Frame store PN-CCD (DUO/ROSITA)

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik Fast transfer in shielded storage area for readout

DUO flight model detectors produced

DUO mission scheduled for 2007

DEPFET Pixel Detectors

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

DEPFET: MOSFET Transistor on depleted silicon bulk Complete charge collection and storage Current readout Random access of pixels Fast readout Low power consumption

Scalable design: Variable pixel size for applications in spectroscopy and tracking

DEPMOS Technology

Double poly / double aluminum process on high ohmic 150mm wafer

H.-G. Moser Munich 13.12.2004 Double metal necessary for matrix operation Self-aligned implantations with respect to polysilicon electrodes => reproducible potential distributions over large matrix areas Low leakage current level: < 200pA/cm² (fully depleted – 450µm)

DEPFET Operation: Energy Resolution

counts / ADC channel

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Excellent energy resolution already at room temperature (measured with a single DEPFET)

Setup:

> source follower read out
 > commercial pre-amp
 > shaping time 6 µs

H.-G. Moser Munich 13.12.2004

"best case conditions"

H.-G. Moser Munich 13.12.2004

Mini-Pixel

Rectangular DEPFET structure: D1 D2 Gate 1

Many Design Variations and Applications

Gate 2

Midi-Pixel Circular DEPFET structure

High position resolution ILC cell size: 25x25µm² Double readout speed by Parallel readout

High energy resolution, medium position resolution

XEUS wide field imager cell size: 100x100µm²

Maxi-Pixel

Integration of a DEPFET into a drift detector

lrift rings

High energy resolution, coarse position resolution

SIMBOL-X, ECLAIR cell size: ~ cm²

PXD4 - DEPFET: Two projects on one wafer

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

p source p drain p drain p drain fet depleted n-Si bulk p back cc	p so p so p so p so p so deep p-well deep n-doping arnal gate' dep n-S	FET gate clear gate Durce n clear p drain deep n-doping internal gate' p back contact
	XEUS (N14-6)	ILC
purpose	imaging spectroscopy	particle tracking
sensor size	7.68 x 7.68 cm ²	1.3 x 10 cm², 2.2 x 12.5 cm²
pixel size	75 µm	25 µm
sensor thickness	300 500 μm	50 µm
noise	4 el. ENC	~ 100 el. ENC
Readout time per row	2.5 µs	20 ns

H.-G. Moser

Munich 13.12.2004

Application: XEUS WFI

Mission concept:

- X-ray telescope consisting of two satelites, mirror (MSC) and detector (DSC) spacecraft
- Formation flight; active control of focal length with 1 mm³ accuracy

Prototype Matrix with 75 μ m x 75 μ m pixels (64x64) ¹

TESLA TDR:

- 5 barrels stand alone tracking
- close to IP, r = 15 mm (1st layer)

Beam-Pipe

Foam Cryostat and Faraday Cage

- pixel size: 20-30 µm
- ~0.1% X_0 per layer
- overall: ~ 1GPixel

H.-G. Moser Munich 13.12.2004

Vertex Detector for TESLA

sensitive area 1st layer module: 100x13 mm², 2nd-5th layer : 125x22 mm² $\rightarrow \sum$ 120 modules

L = 100mm L = 250mm Gasket seal

Barrel 1

TESLA TDR Design

 $\cos \theta = 0.96$

Ladders

Barrel 2-5

Stripline

DEPFET Matrix Operation

ASICs developed by Universities Bonn and Mannheim

Test with Sr90 Source

First results with source test (Sr90):

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik Noise ~80 ADC counts (not yet optimized, 30 achieved with different amplifier)

Most likely signal size: 1500 counts

Noise still dominated by hybrid layout problems. Ok for testbeam (January)

Hitmap

Region without detector Region with DEPFET

ILC Vertex Detector: Module Concept & Material Budget

Sensitive area thinned to 50 $\mu\text{m},$ supported by 300 μm Si-frame

 perforated frame: 0.05 % X_0

total: 0.11 % X₀

Processing thin detectors

PiN Diodes on thin Silicon

- > Wafer Bonding: MPI for Microstructure Physics, Halle, (U. Gösele, M. Reiche)
- > Top Wafer grinding and polishing: Sico Wafer GmbH, Jena
- Processing and deep etching: HLL

DEPFET & Competitions for ILC

Halbleiterlabor der Max-Planck- Institute		Resolution 5(+)10/p sin ^{3/2} θ μm	Material budget ≤ 0.1% X ₀ /I.	Read out Speed (50 MHz)	Power consumpt.	Radiation tolerance Ionisation, n	Remarks
für Physik und extraterrestrische Physik	CCD	4.2(+)4.0/p sin ^{3/2} θ μm + +	+ R&D	O? R&D !!	?	+? R&D	Like in SLD
	HAPS Hybrid APS	7μm –		+ +		+ +	Like in ATLAS
	MAPS Monolithic APS CMOS Microelectr.	2µm +++ But at 50MHz ?	+ R&D	? R&D !!	+?	+? R&D	
HG. Moser Munich 13.12.2004	DEPFET	Like CCD + +	+ R&D	+? R&D	+ +	+? R&D	

Halbleiterlabor

der Max-Planck-Institute

Advantages of DEPFET Arrays at ILC

1. Charge generation and first amplification in a fully depleted pixel cell:

→ good Signal/Noise

für Physik und extraterrestrische Physik 2. No charge transfer needed:

→ better rad. hardness for hadronic irradiation
→ fast read out

3. Wafer scale arrays possible, no stiching of reticles(chips) needed:

→ easier module construction, less material

4. Only one row at a time active, read out at the ladder end: → low power consumption, less material

5. Radiation Hardness ??

 \rightarrow to be demonstrated

Radiation Hardness

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

H.-G. Moser Munich 13.12.2004 Gate voltage shift after irradiation ILC expectation: 100krad in 5 years

~ 2V shift: to be compared to ~20V gate/clear voltage: looks promising!

Development of Silicon Photomultipliers

Photon Detectors developed at HLL so far:

- Single X-ray detection: many electrons/photon
- Measure energy, position and time of arrival
- For optical photons only flux measurements are possible

New experiments require single optical photon detection with high quantum efficiency:

- EUSO (Extreme Universe Space Observatory)
- MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope)
- High Time Resolution Astronomy

H.-G. Moser Munich 13.12.2004 A new concept promises to fulfill these requirements

Applications: MAGIC & EUSO

EEC

Earth

Presently limited by low QE of conventional photomultiplier tubes

H.-G. Moser Munich 13.12.2004

Critical: time resolution (<2.5 ns MAGIC)

Development of Silicon Photomultipliers

SiPMs based on avalanche diode arrays(Geiger Mode) already exist (Dogolshein et al.) However, the QE is still limited (~40%) (Front illumination)

By combining an avalanche structure with a silicon drift diode some shortcomings of existing Silicon Photomultipliers can be overcome:

- High Quantum Efficiency due to backside illumination (100% fill factor).
- High Sensitivity at short wavelengths due to avalanche trigger by electrons instead of holes.
- Large area devices with low area and low capacitance multiplication region.
- Good time resolution due to field shaping of drift region.

Photons enter through unstructured backside and convert in electron hole pairs.

SiPM concept

Electrons drift in the electric field generated by the drift rings to the center.

The deep p implant generates a high field region in which the avalanche multiplication occurs.

The low capacitance of the small avalanche region gives detectable signals at small gain, thus reducing cross talk (due to photon emission)

Advantages of backside illumination

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik Frontside illumination:

QE limited due to: -Surface structures -Short wavelength photons convert close to the surface, before the HF region. Thus only holes can trigger an avalanche, with reduced efficiency n-contact h Deep p (high field) fe h h n-bulk p-contact

Avalanche Efficiency (1 μ m high field region)

SiPM Development

- » Conceptual Design and Simulations ongoing
- » First test structures to be produced early 2005
- » First functional devices end 2005
- » Complete SiPM arrays in 2006
- » Challenges:
- » Dark rate (control bulk generated leakage currents. Thinning!
- Cross talk between pixel due to photons emitted in an avalanche and reabsorbed in neighboring pixels (-> low amplification!)

»

»

Conclusions

- » New Projects, especially for WHI experiments, are emerging:
 - Silicon Drift Detectors for Muon Cooling
- » DEPFET Pixel Detectors for ILC
 - Silicon Photomultiplier for MAGIC & EUSO
- » These projects make use of the production facilities of the HLL, unlike ATLAS SCT, which used mainly design and test facilities
- » Remark: The DEPFET project urgently needs support by a strong ILC physics group!

НӨ	. Moser
Μ	unich
13.1	12.2004

Major Projects

Project	Institutes	Physics	Device	Status
XEUS (X-Ray Evolving Universe Sepctrometer)	MPE ESA	X-Ray Astronomy (Mirror Telescope)	Thick DEPFET Pixel Detector	Small size prototype under test
ILC (Tesla)	WHI Bonn Mannheim	E+ E- linear collider Vertex Detector	Thin DEPFET Pixel Detector	Thick Prototypes under test
DUO	MPE NASA	X-Ray Astronomy (Mirror Telescope)	Frame store pnCCD	Prototype existing Production start
Rosita	MPE ESA	Like DUO	Frame store pnCCD	inage area tarea

HG	i. Moser
Μ	unich
13.1	12.2004

More Projects....

HTRA High Time Resolution Astrophysics	MPE MPIA MPA	Observation of rapidly varying objects (Ground based Optical Telescope)	pnCCD	Produced together with DUO
Sensors for adaptive optics	MPE ESO	Rapid corrections for change in the atmosphere	pnCCD	Produced together with DUO
Compton Camera	MPE Siegen Essen Bonn Jülich Milano	Medical imaging, pharmaceutical investigations	Controlled Drift Detector	Produced together with DUO
SIDDHARTA	MPE Frascati Wien	Investigation of kaonic atoms (X-Ray Spectroscopy)	Drift detectors ~200 of 1cm2	Start July 2004

> H.-G. Moser Munich 13.12.2004

More Projects.... (not complete)

Muon collider	WHI	Muon Cooling By friction (De/dx)	Silicon drift detector (simila to Siddahrta)	Samples for test setup delivered
DRAGO	MPE Milano	Medical imaging	Multicell Silicon drift detector	Available
FELIX	MPE Milano	X-ray fluorescence (art)	Drift detectors	Available
X- and Gamma ray imaging spectroscopy	MPE	Gamma and high energy X-ray detection	Drift detectors	Available
MAGIC (EUSO)	WHI	Air shower telescope	Si- Photomultiplier (avalanche)	Design phase