Neutrinos and the Cosmic Baryon Asymmetry

Michael Plümacher

Max-Planck-Institut für Physik München

(based on collaboration with W. Buchmüller and P. Di Bari)

・ 一下・ ・ ト・・

3

- Introduction: two problems
- Leptogenesis: one solution
- Constraints on neutrino parameters
- Conclusions

э

Introduction

Problem #1: the universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

must have been generated during the evolution of the universe

COSMOLOGY MARCHES ON

Michael Plümacher

Neutrinos and the Cosmic Baryon Asymmetry

Introduction

Problem #1: the universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

must have been generated during the evolution of the universe

Necessary ingredients (Sakharov, 1967)

- Baryon number violation
- C and CP violation
- Deviation from thermal equilibrium

< 17 ▶

Neutrino masses

- direct mass searches: $m_v \lesssim 2 \,\mathrm{eV}$
- Neutrino oscillations:

atmospheric v oscillations: $\Rightarrow m_{v_i} \gtrsim 0.05 \,\text{eV}$

solar v oscillations: $\Rightarrow m_{v_i} \gtrsim 0.008 \,\text{eV}$

Problem #2:

 ν masses are $\neq 0$ but orders of magnitude smaller than any other known masses

Both problems cannot be solved in the Standard Model \Rightarrow need extended model

< ロ > < 同 > < 三 > < 三 >

3

Standard Model:

- left- and right-handed quarks and charged leptons
- neutrinos only left-handed. Why?

Introduce right-handed neutrinos N

First prediction: neutrino masses

$$m_{\rm v} \sim \frac{v^2}{M}$$

 $v \sim 100 \,\text{GeV}$: SM mass scale; *M*: mass of *N*. Observed light neutrino masses yield clues on *M*

$$m_{\rm v} \gtrsim 0.05 \,{\rm eV} \quad \Rightarrow \quad M \lesssim 10^{14} \,{\rm GeV}$$

Second prediction: lepton number L is violated

∃ → 4

< 17 ▶

Baryon and lepton number violation

SM: B + L is violated by instantons

('t Hooft '76; Klinkhammer & Manton '84; Kuzmin et al. '85) Sphalerons are in thermal equilibrium above electroweak 'phase transition':

$$T_{ew} \sim 100 \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV}$$

B + L violated, B - L conserved.

4 3 > 4 3

B and L are not independent at $T \gtrsim 100 \, { m GeV}$

$$\eta_B = c \eta_{B-L} = \frac{c}{c-1} \eta_L$$
, with $c \sim \frac{1}{3}$

L violating processes can generate η_B !

Baryon and lepton number violation

SM: B + L is violated by instantons

('t Hooft '76; Klinkhammer & Manton '84; Kuzmin et al. '85) Sphalerons are in thermal equilibrium above electroweak 'phase transition':

$$T_{ew} \sim 100 \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV}$$

B+L violated, B-L conserved.

B and L are not independent at $T \ge 100 \text{ GeV}$

$$\eta_B = c \eta_{B-L} = \frac{c}{c-1} \eta_L$$
, with $c \sim \frac{1}{3}$

L violating processes can generate η_B !

Leptogenesis

A free lunch:

Right-handed neutrinos can also give rise to η_B (Fukugita and Yanagida '86) Yukawa couplings:

$$\mathcal{L}_Y = \overline{N}\lambda_v \, lH - \frac{1}{2}\overline{N}MN$$

- *N*'s are unstable: $\Gamma_D \propto \widetilde{m}_1 = \frac{v^2}{M_1} \left(\lambda_v^{\dagger} \lambda_v \right)_{11}$
- N interactions violate $L \rightarrow L \neq 0$, partially converted to $B \neq 0$ by sphalerons
- λ_v complex \Rightarrow *CP* violation ε_i

Connection between properties of light neutrinos and η_B ?

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Challenge #1: How do the *N* get produced?

N scattering processes are important all production processes $\propto \tilde{m}_1$

need large \widetilde{m}_1 for efficient production

Challenge #2: washout due to N mediated L violating scatterings

Two contributions to reaction rate:

- resonant contribution from N_1 : $\propto \widetilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{\nu_i}^2$

need small \widetilde{m}_1 and $M_1\overline{m}^2$ to avoid washout

Two conflicting requirements

→ network of Boltzmann equations

Challenge #1: How do the *N* get produced?

N scattering processes are important all production processes $\propto \tilde{m}_1$

need large \widetilde{m}_1 for efficient production

Challenge #2: washout due to N mediated L violating scatterings

Two contributions to reaction rate:

- resonant contribution from N_1 : $\propto \tilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{\nu_i}^2$

∃ ► 4

< 47 ▶

need small \widetilde{m}_1 and $M_1 \overline{m}^2$ to avoid washout

Two conflicting requirements

—> network of Boltzmann equations

Challenge #1: How do the *N* get produced?

N scattering processes are important all production processes $\propto \tilde{m}_1$

need large \widetilde{m}_1 for efficient production

Challenge #2: washout due to N mediated L violating scatterings

Two contributions to reaction rate:

- resonant contribution from N_1 : $\propto \tilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{\nu_i}^2$

Two conflicting requirements

()

Image: A matrix

Η

u

Baryon asymmetry determined by four parameters

- **O** *CP* asymmetry ε_1
- 2 mass of decaying neutrino M_1
- effective light neutrino mass

mass
$$\widetilde{m}_1 = v^2 \frac{(\lambda_v^{\dagger} \lambda_v)_{11}}{M_1}$$

 $\overline{m} = \sqrt{m_{v_1}^2 + m_{v_2}^2 + m_{v_3}^2}$

Final baryon asymmetry

Iight neutrino masses

$$\eta_B \simeq 10^{-2} \varepsilon_1 \kappa(\widetilde{m}_1, M_1 \overline{m}^2)$$

need to know:

- *CP* asymmetry ε₁ (from neutrino mass model)
- efficiency factor κ parametrizes N interactions (from integration of Boltzmann eqs.)

< 17 ▶

< ∃⇒

 $\rightarrow N$ interactions reduce efficiency:

- for $\tilde{m}_1 \ll 10^{-3} \,\text{eV}$: N production inefficient
- for $\widetilde{m}_1 \gg 10^{-3} \,\mathrm{eV}$: washout too strong
- for $M_1 \gtrsim 10^{13} \, {
 m GeV}$: $\Gamma_{\Delta L=2} \propto M_1 \overline{m}^2$ becomes important

 $\rightarrow N$ interactions reduce efficiency:

- for $\tilde{m}_1 \ll 10^{-3} \,\text{eV}$: N production inefficient
- for $\tilde{m}_1 \gg 10^{-3} \,\mathrm{eV}$: washout too strong

• for $M_1 \gtrsim 10^{13} \,\text{GeV}$: $\Gamma_{\Delta L=2} \propto M_1 \overline{m}^2$ becomes important

 $\rightarrow N$ interactions reduce efficiency:

- for $\tilde{m}_1 \ll 10^{-3} \,\text{eV}$: N production inefficient
- for $\tilde{m}_1 \gg 10^{-3} \,\text{eV}$: washout too strong
- for $M_1 \gtrsim 10^{13} \,\text{GeV}$: $\Gamma_{\Delta L=2} \propto M_1 \overline{m}^2$ becomes important

Baryon asymmetry determined by four parameters

- **O** *CP* asymmetry ε_1
- 2 mass of decaying neutrino M_1
- effective light neutrino mass

mass
$$\widetilde{m}_1 = v^2 \frac{(\lambda_v^{\dagger} \lambda_v)_{11}}{M_1}$$

 $\overline{m} = \sqrt{m_{v_1}^2 + m_{v_2}^2 + m_{v_3}^2}$

Final baryon asymmetry

Iight neutrino masses

$$\eta_B \simeq 10^{-2} \varepsilon_1 \kappa(\widetilde{m}_1, M_1 \overline{m}^2)$$

need to know:

- *CP* asymmetry ε₁ (from neutrino mass model)
- efficiency factor κ parametrizes N interactions (from integration of Boltzmann eqs.)

< 17 ▶

< ∃⇒

CP asymmetry

$$\varepsilon_1 = \frac{\Gamma(N \to l) - \Gamma(N \to \bar{l})}{\Gamma(N \to l) + \Gamma(N \to \bar{l})}$$

for $M_{2,3} \gg M_1$: upper bound on ε_1 in terms of light v masses:

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{\nu^2} f\left(m_{\nu_i}, \widetilde{m}_1\right)$$

two limiting cases:

• hierarchical light vs: $m_{v_1} \rightarrow 0 \Rightarrow \epsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{v_3}}{v^2}$

• degenerate light vs: $m_{v_3} = m_{v_1} \Rightarrow \epsilon_1^{\max} = 0$

ightarrow CP asymm. suppressed if light v spectrum quasi-degenerate

Neutrinos and the Cosmic Baryon Asymmetry

CP asymmetry

$$\varepsilon_1 = \frac{\Gamma(N \to l) - \Gamma(N \to \bar{l})}{\Gamma(N \to l) + \Gamma(N \to \bar{l})}$$

for $M_{2,3} \gg M_1$: upper bound on ε_1 in terms of light v masses:

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{\nu^2} f\left(m_{\nu_i}, \widetilde{m}_1\right)$$

two limiting cases:

• hierarchical light vs: $m_{v_1} \rightarrow 0 \implies \epsilon_1^{\max} = \frac{3}{16\pi} \frac{M_1 m_{v_3}}{v^2}$

• degenerate light vs: $m_{v_3} = m_{v_1} \Rightarrow \epsilon_1^{max} = 0$

ightarrow CP asymm. suppressed if light v spectrum quasi-degenerate

Neutrinos and the Cosmic Baryon Asymmetry

CP asymmetry

$$\varepsilon_1 = \frac{\Gamma(N \to l) - \Gamma(N \to \bar{l})}{\Gamma(N \to l) + \Gamma(N \to \bar{l})}$$

for $M_{2,3} \gg M_1$: upper bound on ε_1 in terms of light v masses:

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{\nu^2} f\left(m_{\nu_i}, \widetilde{m}_1\right)$$

two limiting cases:

- hierarchical light vs: $m_{v_1} \rightarrow 0 \implies \epsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{v_3}}{v^2}$
- degenerate light vs: $m_{v_3} = m_{v_1} \Rightarrow \epsilon_1^{\max} = 0$

 \rightarrow CP asymm. suppressed if light v spectrum quasi-degenerate

Constraints on neutrino parameters

- N_1 production processes $\propto \tilde{m}_1 \Rightarrow$ lower limit on \tilde{m}_1
- Washout processes:

res. contrib. from $N_1 \propto \widetilde{m}_1 \Rightarrow$ upper limit on \widetilde{m}_1

remainder $\propto M_1 \overline{m}^2 \Rightarrow$ upper limit on M_1 for fixed \overline{m}

Some maximal *CP* asymmetry $\propto M_1 \Rightarrow$ lower limit on M_1 since $\eta_B \propto \varepsilon_1$

for fixed $\overline{m} \Rightarrow$ allowed region in (\widetilde{m}_1, M_1) plane

Size of allowed region depends on \overline{m} since:

- max. CP asymm. suppressed for quasi-degenerate light vs
- $\widetilde{m}_1 \geq m_{\nu_1}$
- \Rightarrow upper bound on \overline{m}

Upper bound on light neutrino masses

- light v masses: $\overline{m} \ge m_{\text{atm}} = 0.05 \text{ eV} \Rightarrow$ lower bound on the baryogenesis temperature $T_B \sim M_1 \gtrsim 10^9 \text{ GeV}$
- $\overline{m} < 0.22 \,\mathrm{eV} \quad \Rightarrow \quad m_{\mathrm{v}_i} < 0.13 \,\mathrm{eV}$

Conclusions

- Type I seesaw naturally explains the cosmological baryon asymmetry and the smallness of neutrino masses
- Quasi-degenerate light v masses are incompatible with leptogenesis:

 $m_{v_i} < 0.13 \, \text{eV}$

• lower bound on the baryogenesis temperature:

 $T_B \gtrsim 10^9 \,\mathrm{GeV}\,, \qquad t_B \sim 10^{-25}\,\mathrm{s}$

くぼう くほう くほう

3