Multivariative analysis of $H\to b\bar{b}$ in $t\bar{t}H$ associated production mode in ATLAS with fast simulation

Sergey Kotov

MPI für Physik, München

MPI ATLAS meeting, Apr 18, 2005

Sergey Kotov (MPI für Physik, München)

Mutltivariative $t\bar{t}H, H \rightarrow b\bar{b}$ analysis

MPI ATLAS meeting, Apr 18, 2005 1 / 11

Low mass SM Higgs boson overview

- 2 Channel description
- Event reconstruction
- 4 Neural network training

5 Analysis results

Summary

Low mass SM Higgs boson overview

- $H \rightarrow ZZ^* \rightarrow 4l$ in VBF production mode
- $H \rightarrow \gamma \gamma$ in gluon fusion production mode
- $H \to b \overline{b}$ in $t \overline{t} H$ associated production mode

Mutltivariative $t\bar{t}H, H \rightarrow b\bar{b}$ analysis

Features of $t\bar{t}H, H \rightarrow b\bar{b}$ channel

Complex final state

6 jets: 4 b-jets and 2 light jets 1 high- p_t lepton (trigger) missing energy E_t^{miss} from neutrino additional jets from ISR/FSR

Large backgrounds

combinatorial from mis-pairing of b-jets in signal events

- irreducible from $t\bar{t}b\bar{b}$ events
- reducible from $t\bar{t}jj$ events

full reconstruction of event and very good b-jet tagging are needed to suppress backgrounds

Signal and background cross sections				
Process	$t \overline{t} H$ (m_H =120 GeV)	$t\bar{t}b\bar{b}$	$tar{t}jj$ (\geq 6 jets)	
σ , pb	0.5	9.2	72	

Event topology, preselection and data samples

PYTHIA 6.2 and AcerMC 2.3 programs are used for event generation ATLFAST package is used for fast simulation of ATLAS detector response

Preselection: event topology cuts

- 1 isolated lepton with $p_t > 20(25)$ GeV for $\mu(e)$ and $\eta < 3$
- \geq 6 jets with p_t > 20 GeV and η < 5
- ≥ 4 of jets identified as b-jets

Data samples			
Process	$t\bar{t}H$	$t\bar{t}b\bar{b}$	$t\bar{t}jj$
Generated events, M	0.6	1	1
Preselection efficiency, %	2.1	0.8	0.02

ATLFAST underestimates the b-tagging efficiency (ϵ_b =0.42 compared to ϵ_b =0.60-0.65 in full simulation), so we use an efficiency scale factor in our final calculations

Main reconstruction challenge

How to reconstruct $t\bar{t}$ -pair from all possible $bl\nu - bjj$ combinations properly with correct assignment of b-jets?

Various approaches to $t\bar{t}$ -pair reconstruction

- ATLAS Technical Design Report: select combination with minimal $\Delta^2 = (m_{bl\nu} m_t)^2 + (m_{bjj} m_t)^2$
- a recent improved approach which uses likelihood techniques for reconstruction of $t\bar{t}$ -pair
- this analysis uses neural network technique for tt-pair reconstruction

Reconstruction strategy with Neural Network

- use events which pass preselection criteria (1 lepton, 4 b-jets, 2 light jets)
- determine p_{ν} from p_l and p_{miss} using m_W constraint (if fails, use approximation $p_{\nu}^z = p_l^z$)
- select all possible reconstructed combinations of lepton, neutrino, 2 light jets and 2 b-jets for which the reconstructed invariant masses m_{jj} , $m_{bl\nu}$, and m_{bjj} fit inside some mass windows of W boson and t-quark (30 GeV and 70 GeV respectively)
- feed parameters of these combinations through a neural network (which was trained beforehand on a sample of combinations matched and non-matched to MC generator truth table) and select combination with the highest NN output value
- assign the remaining 2 b-jets to the Higgs boson and plot their invariant mass m_{bb}

Neural network basics

- 14 input variables: 5 invariant mass differences, 8 angular separations in φ-η plane, 1 sum of transverse momenta
- TMultiLayerPerceptron ROOT built-in class is used as neural network (1 hidden layer with 15 nodes)
- 6000 of matched and 21000 of non-matched combinations were used (with proper weights) to train the neural network

Neural network variables

Sergey Kotov (MPI für Physik, München)

Mutltivariative $t\bar{t}H, H \rightarrow b\bar{b}$ analysis

Effectiveness of the neural network for background suppression

Cut	ϵ_{ttH}	ϵ_{cmbn}	ϵ_{ttbb}	ϵ_{ttjj}
0.5	0.768	0.238	0.209	0.163
0.6	0.657	0.157	0.139	0.090
0.7	0.510	0.093	0.080	0.046
0.8	0.330	0.044	0.038	0.023

Since there're on average about 9 wrongly paired combinations in a $t\bar{t}H$ event, the signal purity is about 35%

Expected number of events for $L = 30 f b^{-1}$

Scale factor	4.15	3	2	1	LH
ϵ , %	2.24	1.62	1.08	0.54	1.32
N_{ttH}	101.5	73.4	49.0	24.5	41.9
N_{ttbb}	583.1	421.5	281.0	140.5	164.2
N_{ttjj}	134.6	97.3	64.9	32.4	54.6
S/\sqrt{B}	3.8	3.2	2.6	1.9	2.8
Purity	0.33	0.33	0.33	0.33	0.29
$\frac{N_{ttjj}}{S/\sqrt{B}}$ Purity	134.6 3.8 0.33	97.3 3.2 0.33	64.9 2.6 0.33	32.4 1.9 0.33	54.6 2.8 0.29

Purity of reconstructed $t\bar{t}H$ events (fraction of events with all 4 b-jets correctly assigned) is important for finding of the Higgs mass peak

Summary

Conclusions

- a neural network approach was tried for reconstruction of $t\bar{t}$ -pair in $t\bar{t}H$ events produced with fast simulation of the ATLAS detector
- the obtained signal significance is still rather low, in large due to imperfections of the fast simulation algorithms

Current status

- 20k of signal $t\bar{t}H$ and 20k of irreducible $t\bar{t}b\bar{b}$ background events were produced at Garching computing farm (up to digitization step, reconstruction is pending)
- a different MC event generator Alpgen instead of Pythia will probably be used for generation of reducible $t\bar{t}jj$ background

Future plans

- retry the neural network approach on the abovementioned sample of fully simulated events for Rome physics workshop
- more elaborate consideration of the background sources is need to improve signal significance (ATLFAST
 program needs to be tuned for this using full simulation data, because it is impossible to produce the
 required amount of background events with full simulation of the ATLAS detector)