N.Benekos, G.Dedes, S.Horvat, O.Kortner, S.Kotov, J.v.Loeben, C.Valderanis

MPI Monte Carlo Production for the Rome Workshop

MPI, May 23th, 2005

Produced data: Calibration Samples

Sample	Producer	Specifications	Generated (9.0.4)	Simulated (10.0.1)	Digitized (10.0.1)	Reconstructed (10.0.1)	
Calibration							
SINGLE MUONS, energy loss determination (dataset 4041 · 4047)	Nektarios	Pt = 5, 6, 10, 20, 50, 250, 500 GeV; B=0	7 x 20 000				
Z->mu mu (dataset 4122)	Oliver, Nektarios, Jörg	Pt(Z) = 0 - 10 GeV	10 000	10 000			
	Oliver, Nektarios, Jörg	Pt(Z) = 10 - 20 GeV	10 000	10 000	10 000	5 900	
	Oliver, Nektarios, Jörg	Pt(Z) = 20 - 40 GeV	10 000				
	Oliver, Nektarios, Jörg	Pt(Z) = 40 - 100 GeV	10 000				

Produced data: Signal and Background Samples

Sample	Producer	Specifications	Generated (9.0.4)	Simulated (10.0.1) / (9.0.4)	Digitized (10.0.1) / (9.0.4)	Reconstructed (10.0.1) / (10.0.1)		
Signal channels								
H->ZZ->4I (dataset 4330)	Sandra	m(H) = 115 GeV	48 000	5 200	5 200	4 500		
(dataset 4331)	Sandra	m(H) = 280 GeV	69 000	7 700	7 200			
pp->ttH,H->bb (dataset 1200)	Sergei, Makis	m(H)=120	30 000	30 000	30 000	10 000		
bbA->bb(mu mu) (dataset 4332)	Sandra, Georgios	m(A) = 150 GeV	8 300	7 800	6 000			
(dataset 4333)	Sandra, Georgios	m(A) = 300 GeV	9 100	8 500 / 9 000	8 000 / 4 500	7 700 / 1 400		
(dataset 4334)	Sandra, Georgios	m(A) = 450 GeV	9 300					
bbA/H->bb(tau tau) (dataset 4335)	Sandra, Georgios	m(A) = 150 GeV	10 000	10 000	10 000			
(dataset 4336)	Sandra, Georgios	m(A) = 300 GeV	10 000	10 000	10 000			
(dataset 4337)	Sandra, Georgios	m(A) = 450 GeV						

Background channels							
pp->ttbb (dataset 1201)	Sergei, Makis	20 000	10 000	10 000			
tt->(mu nu b)(mu nu b) (dataset 1100)	Sandra, Georgios	10 000	10 000				

MPI computing cluster at the Rechenzentrum Garching

140 jobs can be run at once, less if high CPU consumption:

- 1 MAGIC user with priority rights (40 jobs max.)
- 1(2) ATLAS user(s) with priority rights (40 jobs max. each)
- 6 other ATLAS users (30 jobs max. each)

Process	Start	Nb. events/job	time/event	software related	
				failure rate	
Generation	end of March	10k - 50k	${\sim}1~{\rm sec}$	0%	
Simulation	end of March	100	\sim 7 min	\sim 0-5%	
Digitization	end of March	50 - 100	\sim 2 min	\sim 0-10%	
Reconstr.	end of April	25	\sim 2 min	\sim 0-10%	
		(100, high-mem)		\sim 0-10%	

Some 4 000 jobs have succesfully finished in 40 days of production = \sim 20 jobs per user per day.

Sources of problems

Failures due to the software problems:

• runtime errors (DIGI)

Stream1.sysExec... FATAL Standard std::exception is caught, RuntimeError: St9exception

ToolSvc ERROR Unable to finalize the following tools : ToolSvc.LArCablingService (dissapears if digitizing 50 instead of 100 events/job)

• no connection to database (SIMUL, DIGI, RECO)

POOL/RelationalPlugins/oracle Error ORA-03114: not connected to ORACLE;

CondDBMySQLCnvSvc FATAL *** ConditionsDB exception caught

Up to now the system is still beeing optimized to user needs.

Failures due to the system problems:

- if too many jobs are in the queue the pending jobs exit after some time with an error flag no solution
- no space left in the working directory solved by cleaning up the working space
- no connection to the TAPE with the data files solution: report to administrator, then sit and wait
- batch system down (mainly on the weekends) solution: report to administrator, sit and wait (for monday)

 \implies The production has to be babysitted on a daily basis.

Standard validation tests:

- efficiency of the particle reconstruction (electrons, muons, jets)
- energy and momentum resolution of the reconstructed particles

Validation performed on the following samples:

 $H \rightarrow ZZ \rightarrow 4$ l, $tt(H \rightarrow bb)$, $bb(A \rightarrow \mu^+\mu^-)$

 Electrons (EGAMMA): only 80% efficiency, p_T-recalibration needed

- Muons (MUONID = MOORE + TRACK PARTICLE): 90% efficiency (95% for $|\eta| < 1.9$, 80% for $|\eta| > 1.9$) O.K., resolution O.K.
- b-jets (KTBJET):
 40% efficiency O.K.?, reconstructed energy shifted to lower values

Comparison with the CERN Rome-Production

We compare these results with the data from the official CERN Rome-production.

3 $bb(A \rightarrow \mu^+ \mu^-)$ samples for the comparison:

Sample	Nb.events	SIMU	DIGI	RECO	remark
CERN-s904	3500	9.0.4	9.0.4	10.0.1	CERN standard
MPI-s101	7700	10.0.1	10.0.1	10.0.1	our standard
MPI-s904	1400	9.0.4	9.0.4	10.0.1	for the test

\Downarrow

- muon efficiency 10% better at MPI (both s9.0.4 and s10.0.1), momentum resolution similar for all three samples
- b-jet efficiency similar for all three samples,
 b-jet energy shifted by different amounts for s9.0.4 and s10.0.1

Muon Efficiency

b-jet efficiency

b-jet momentum reconstruction

- After a month of optimizations, the Garching cluster aproaches the stable setup.
- First samples of Rome data reconstructed.
- Validation:

Data are far away from perfect, both at MPI and at CERN.

- Comparison with the official CERN production:
 - where does the difference for the muon efficiency come from?
 - differences in the jet simulation using 9.0.4 and 10.0.1 release, but none gives satisfying results for $tt(H \rightarrow bb)$ channel
- Physics analyses (*ttH*, *bbA*) are ongoing.