LENA Project First Feasibility Studies

Teresa Marrodán Undagoitia tmarroda@ph.tum.de

Institut E15 Technische Universität München

4th MPI Young Scientists Workshop: Hot Topics in Particle and Astroparticle Physics, Rinberg, 21.07.05

Outline

General Characteristics of LENA

- Physics Goals
- Proposed LENA Detector
- Possible Locations

2 Proton Decay

- Theoretical Predictions
- Simulation with Geant4
- Event Topology

First Simulation Results

- Signal Structure
- Background
- Proton Decay Sensitivity

First Simulation Results

Physics Goals

Outline

General Characteristics of LENA

- Physics Goals
- Proposed LENA Detector
- Possible Locations
- Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology
- First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Physic Goals

Physics Goals

Proton Decay

First Simulation Results

Low Energy Neutrino Astronomy

Supernovae Neutrinos

Study of the gravitational collapse of a heavy star

Relic Supernovae Neutrinos

Study of star formation in the early universe

Physic Goals

Physics Goals

Proton Decay

First Simulation Results

Low Energy Neutrino Astronomy

Solar Neutrinos

- Precision measurement of thermonuclear fusion processes
- Search for flux variations

Geoneutrinos

- Tests of geophysical models with anti-neutrino spectroscopy
- Is there a natural nuclear reactor in the centre of the earth?

Physic Goals

Physics Goals

Proton Decay

First Simulation Results

Low Energy Neutrino Astronomy

Neutrino Properties

• Long-baseline neutrino oscillation experiments

Proton Decay

Search for baryon number violation

First Simulation Results

Proposed LENA Detector

Outline

General Characteristics of LENA
 Physics Goals

Proposed LENA Detector

- Possible Locations
- Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology
- 3 First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Proton Decay

First Simulation Results

Proposed LENA Detector

Proposed LENA Detector

Volume

 \sim 100 m length \times 30 m \varnothing

Liquid Scintillator 45.000 ton PXE

Photomultipliers

12.000 units 30% surface

・ ロ ト ・ 雪 ト ・ 目 ト ・

Possible Locations

Outline

General Characteristics of LENA Physics Goals Proposed LENA Detector Possible Locations Proton Decay Theoretical Predictions Simulation with Geant4

- Event Topology
- 3 First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Proton Decay

First Simulation Results

Possible Locations

Possible Locations

'Centre for Underground Physics' in Pyhasalmi

'Nestor Base' close to the coast at Pylos

ヘロト ヘ戸ト ヘヨト

Theoretical Predictions

Outline

- General Characteristics of LENA
- Physics Goals
- Proposed LENA Detector
- Possible Locations
- 2 Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology
- First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Theoretical Predictions

Proton Decay: Theoretical Predictions

GUT SU(5)

Dominant decay mode:
$$\ensuremath{ \rho
ightarrow e^+ \pi^0} \ensuremath{ \tau \sim 10^{31} \ y}$$

• Superkamiokande: $\tau \gtrsim 5.10^{33}$ y (90% C.L.)

SUSY SU(5)

Dominant decay mode: $p \rightarrow K^+ \overline{\nu}$ $\tau \lesssim 10^{35}$ y

• Superkamiokande: $\tau \gtrsim$ 2.3 \cdot 10³³ y (90 % C.L.)

Supergravity SU(5)

Dominant mode: $p \rightarrow \pi^+ \overline{\nu}$ BR: 65.7 % Second mode: $p \rightarrow K^+ \overline{\nu}$ BR: 33.5 %

Simulation with Geant4

Outline

- General Characteristics of LENA
 - Physics Goals
 - Proposed LENA Detector
 - Possible Locations

Proton Decay

- Theoretical Predictions
- Simulation with Geant4
- Event Topology
- 3 First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Proton Decay

First Simulation Results

Simulation with Geant4

Simulation with Geant4

- Monte Carlo calculations
- Scintillation
- Quenching factors
 - Birk's formula
- Photomultipliers:
 - Time jitter
 - $\sigma = 1 \text{ ns}$
 - Efficiency: $\varepsilon = 0.17$

(日)

Event Topology

Outline

- General Characteristics of LENA
 - Physics Goals
 - Proposed LENA Detector
 - Possible Locations

2 Proton Decay

- Theoretical Predictions
- Simulation with Geant4
- Event Topology
- 3 First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

General	Characteristics	LENA

First Simulation Results

Event Topology

Free Protons

Event Structure: $ ho o K^+ \overline{ u}$	
$\mathcal{T}(\mathcal{K}^+)=$ 105 MeV $ au(\mathcal{K}^+)=$ 12.8 ns	

•
$$K^+ \to \mu^+ \nu_\mu$$
 63.43%
• $T(\mu^+) = 152 \text{ MeV}$
• $\tau(\mu^+) = 2.2 \ \mu \text{s}$
• $\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$

•
$$K^+ \to \pi^+ \pi^0$$
 21.13%
• $T(\pi^+) = 108 \text{ MeV}$
• $\tau(\pi^+) = 26 \text{ ns}$
• $T(\pi^0) = 110 \text{ MeV}$
• $\tau(\pi^0) = 8.4 \cdot 10^{-8} \text{ ns}$
• $\pi^+ \to \mu^+ \nu_\mu \quad \pi^0 \to \gamma\gamma$

Event Topology

Protons from ¹²C

Binding energy

- S-state: \sim 37 MeV
- P-state: \sim 16 MeV

Fermi Motion

• Momenta up to \sim 250 MeV/c

ヘロト 人間 とくほとくほとう

First Simulation Results

Proton Decay ○○○○○●

Signal Structure

Outline

- General Characteristics of LENA
 - Physics Goals
 - Proposed LENA Detector
 - Possible Locations
- Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology
- First Simulation Results
 - Signal Structure
 - Background
 - Proton Decay Sensitivity

Proton Decay

First Simulation Results

Signal Structure

Signals of Proton Decay in LENA

Kaon decay after 18 ns

Kaon decay after 5 ns

(日)

Background

Outline

- General Characteristics of LENA
 - Physics Goals
 - Proposed LENA Detector
 - Possible Locations
- Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology
- First Simulation Results

 Signal Structure
 Background
 - Proton Decay Sensitivity

First Simulation Results

Background

Muon Production by Atmospheric u_{μ}

$$\nu_{\mu} + N \rightarrow \mu^{-} + N'$$

Background rate from Superkamiokande $\Gamma = 4.8 \cdot 10^{-2}$

$$(MeV^{-1}kt^{-1}y^{-1})$$

 Pulse shape analysis

(日)

Risetime

First Simulation Results

Background

Background Rejection: Time Cut

Proton Decay

First Simulation Results

・ロット (雪) (日) (日)

Background

Background Rejection: Energy cut

First Simulation Results

Background

Hadron Production by Atmospheric u_{μ}

Pion Production
•
$$\nu_{\mu} + N \rightarrow \mu^{-} + \pi^{+} + N'$$

• $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$
• $\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$

First Simulation Results

MÜNCHEN

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Background

Hadron Production by Atmospheric ν_{μ}

Proton Decay Sensitivity

Outline

- General Characteristics of LENA
 - Physics Goals
 - Proposed LENA Detector
 - Possible Locations
- Proton Decay
 - Theoretical Predictions
 - Simulation with Geant4
 - Event Topology

3 First Simulation Results

- Signal Structure
- Background
- Proton Decay Sensitivity

Proton Decay Sensitivity

Proton Decay Sensitivity

- Activity of proton decay: $A = \epsilon N_{p} t_{m} / \tau$
- Total efficiency: $\varepsilon = \varepsilon_E \cdot \varepsilon_T = 0.65$
- Protons in the detector: $N_p = 1.4 \cdot 10^{34}$
- Measuring time: $t_m = 10 \text{ y}$

Potential of LENA

- For Superkamiokande current limit: $\tau = 2.3 \cdot 10^{33}$ y
 - 40 events in LENA
 - 0.5 background
- No signal in LENA:
 - $\tau > 4 \cdot 10^{34} \text{ y} 90\%$ (C.L)

Proton Decay

First Simulation Results

Proton Decay Sensitivity

Summary and Outlook

Conclusion

A factor 10 in proton lifetime reachable in LENA

Outlook

- Rearch for other channels
- Other physics
- Technical feasibility studies
- International interest in LENA type detector

