4th MPI Young Scientist Workshop: Hot Topics in Particle and Astroparticle Physics Ringberg Castle, Tegernsee, July 18-22, 2005

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Inclusive V^0 Hadroproduction with the SELEX Experiment at FERMILAB

Miguel Angel Olivo Gómez, MPI für Physik, München

OUTLINE

- Introduction
- The SELEX (E781) Experiment
- The Measurement Technique
- The Preliminary Results
- Summary

INTRODUCTION

- Basically, No Theory based on first principles for hadroproduction.
- No high statistics hadroproduction measurements for strange particles.
- These measurements had never been done in a single experiment.
- These measurements could either support or not the current models.

• The particle production is classified by:

- \star Inclusive Production: Only one of the produced particles is identified in each collision. For example, $p \ p o \overline{\Lambda} X$.
- **\star** Exclusive Production: When all of the produced particles are identified in each collision. For example, $p \ p o p \ \overline{\Lambda} \ \Sigma^+ \ n$.
- The particle production is characterized by:
 - \star The transverse momentum: p_T
 - \star The longitudinal momentum: p_L
- For the longitudinal momentum we use the Feynman scaling variable:

$$x_F = rac{p_L^{cm}}{p_{max}^{cm}}$$

INCLUSIVE Λ , $\overline{\Lambda}$ AND K_s PRODUCTION MEASUREMENTS

• HERA-B used a proton beam at 920 GeV/c on C, Al, Ti and W targets and measured: (Eur.Phys.J. C 29 (2003), 181)

 $\mathrm{d}\sigma/\mathrm{d}x_F$ over $-0.12 \leq x_F \leq 0.$ $\mathrm{d}\sigma/\mathrm{d}p_T^2$ over $0 \leq p_T^2 \leq 1.2~(\mathsf{GeV/c})^2.$

• WA89 used Σ^- and π^- beams at 345 GeV/c on Cu and C targets and measured: (Eur.Phys.J. C 26 (2003), 357)

 $egin{array}{lll} \mathrm{d}\sigma/\mathrm{d}x_F & \mathrm{over} & 0 \leq x_F \leq 0.8 & \mathrm{for} \ \Lambda \ \mathrm{and} \ \overline{\Lambda}. \ \mathrm{d}\sigma/\mathrm{d}x_F & \mathrm{over} & 0 \leq x_F \leq 0.7 & \mathrm{for} \ K_s. \ \mathrm{d}\sigma/\mathrm{d}p_T^2 & \mathrm{over} & 0 \leq p_T^2 \leq 4 \ (\mathrm{GeV/c})^2 & \mathrm{with} \ \Sigma^- \ \mathrm{beam}. \ \mathrm{d}\sigma/\mathrm{d}p_T^2 & \mathrm{over} & 0 \leq p_T^2 \leq 2.2 \ (\mathrm{GeV/c})^2 & \mathrm{with} \ \pi^- \ \mathrm{beam}. \end{array}$

• E769 used π^{\pm} , K^{\pm} and p beams at 250 GeV/c on Be, Al and W targets and measured Λ - $\overline{\Lambda}$ asymmetry as a function of x_F and p_T^2 over: (Phys.Lett. B 559 (2003), 179)

 $egin{aligned} -0.12 \leq x_F \leq 0.12 & ext{and} & 0 \leq p_T^2 \leq 3 \ (ext{GeV/c})^2 & ext{for} + ext{beams.} \ -0.16 \leq x_F \leq 0.4 & ext{and} & 0 \leq p_T^2 \leq 10 \ (ext{GeV/c})^2 & ext{for} - ext{beams.} \end{aligned}$

• E791 used a π^- beam at 500 GeV/c on 4 diamond and 1 platinum targets and measured Λ - $\overline{\Lambda}$ asymmetry as a function of: (Phys.Lett. B 496 (2000), 9)

• We used 4 beams: Σ^- (at 611 GeV/c), π^- (at 604 GeV/c), proton (at 525 GeV/c) and π^+ (at 520 GeV/c) on 2 Cu and 3 diamond targets and measured:

• And we measured Λ - $\overline{\Lambda}$ asymmetry as a function of x_F and p_T over: $0.1 \leq x_F \leq 1.$ $0 \leq p_T \leq 3.25$ (GeV/c). • A model based on quark counting rules and phase arguments:

Blankenbecler and Brodsky (Phys.Rev. D 10 (1974), 2973)

$$rac{\mathrm{d}\sigma}{\mathrm{d}x_F\mathrm{d}p_T^2} \propto \left(1-x_F
ight)^n \; \exp\left(-bp_T^2
ight)$$

THE SELEX (E781) EXPERIMENT

THE SELEX SPECTROMETER

- A Fixed Target Experiment with forward production $(x_F > 0.1)$
- \bullet Data taken 1996/97. RICH PID above pprox 22 GeV/c
- \bullet 20 highly-efficient SSD's with 6.5 μ m resolution

THE BEAM TRANSITION RADIATION DETECTOR (BTRD)

- 10 modules, each of them with a radiator and 3 PWC (Planes).
- ullet The radiation emission probability is proportional to γ
- A π with the same energy than a Σ or proton, activates more planes.
- k =activated planes number.

• The negative beam consists of: (Nucl.Phys. B 579 (2000), 277):

- \bullet The baryon fraction = 47.5 ± 1.6 %
 - \bullet 97.52 \pm 4.70 % of Σ^-
 - $\bullet~2.48\pm0.15~\%$ of Ξ^-
- \bullet The meson fraction = 52.5 \pm 1.6 %
 - \bullet 96.95 \pm 4.71 % of π^-
 - ullet $3.05 \pm 1.91~\%$ of K^-

• The positive beam consists of: (Nucl.Phys. B 579 (2000), 277):

- \bullet The baryon fraction = 91.9 ± 1.4 %
 - \bullet 97.06 \pm 2.28 % of protons
 - $\bullet~2.94\pm0.76~\%$ of Σ^+
- \bullet The meson fraction = 8.1 \pm 1.4 %
 - 70 % of π^+
 - 30 % of K^+

NEGATIVE BEAM MOMENTUM DISTRIBUTIONS

x 10 ²

POSITIVE BEAM MOMENTUM DISTRIBUTIONS

x 10 ²

MEASUREMENT TECHNIQUE

CANDIDATE INVARIANT MASS DISTRIBUTION

Miguel Angel Olivo Gómez, MPI für Physik

4th MPI Young Scientist Workshop, Jul 18-22, 2005

Page 18

CANDIDATE X_F DISTRIBUTION FOR EACH BEAM

SIDEBAND SUSTRACTION TECHNIQUE

^y Miguel Angel Olivo Gómez, MPI für Physik

What does it mean?

Experiment (hardware and software) efficiency for reconstructing a particle as a function of x_F .

How do we obtain the acceptance?

- $10^6 \ \Lambda$ are generated with EDG based on model A (n=0 and b=2).
- Embedding: These Λ are embedded in a sample of 10^6 real events from SELEX, and only some of them are reconstructed by SOAP. For example, 10^3 .

• Acceptance =
$$10^3(x_F)/10^6(x_F)$$

Page 22

Miguel Angel Olivo Gómez, MPI für Physik

- But a smooth acceptance distribution is needed. This is NOT our case.
- Survival probability: Probability that a particle travels a distance x.

$$P(x) = \exp\left(-rac{x}{\gamma c au}
ight)$$

 Acceptance = Prob. that a particle decays where it can be identified. Let d be the distance throughout the length of the detector where it happens, therefore,

$$Acceptance = rac{\int_0^a P(x) \mathrm{d}x}{\int_0^\infty P(x) \mathrm{d}x}$$
 $Acceptance(x_F) pprox 1 - \exp\left(-rac{d}{c au \sqrt{\left(rac{p_{beam}c \; x_F}{Mc^2}
ight)^2 + 1}}
ight)$

.7

• Then, the following function is fitted to the acceptance (non-smooth) x_F distribution of the produced Λ by the Σ^- beam.

$$Acceptance(x_F) = p_1 - \exp\left(-rac{p_2}{7.89\sqrt{\left(rac{611.1\ x_F}{1.115683}
ight)^2 + 1}}
ight)$$

• We use this function with the fit-parameters to perform the acceptance event correction.

THE ACCEPTANCE EVENT CORRECTION

Miguel Angel Olivo Gómez, MPI für Physik

PRELIMINARY RESULTS

PRELIMINARY RESULTS !!!

Only Statistical Errors

Miguel Angel Olivo Gómez, MPI für Physik

PRELIMINARY RESULTS !!!

Only Statistical Errors

Miguel Angel Olivo Gómez, MPI für Physik

PRELIMINARY RESULTS !!!

Miguel Angel Olivo Gómez, MPI für Physik

IN COMPARISON TO ...

Miguel Angel Olivo Gómez, MPI für Physik

MODEL: DOES NOT WORK !!!

Page 33

S U M M A R Y

- Inclusive differential cross sections $\frac{\mathrm{d}\sigma}{\mathrm{d}x_F}$ and $\frac{\mathrm{d}\sigma}{\mathrm{d}p_T}$ for the production of Λ , $\overline{\Lambda}$ and K_s in π^- , π^+ , Σ^- and proton-nucleon collisions were measured over the ranges $0.1 \leq x_F \leq 1$, $0 \leq p_T \leq 3.25$ GeV/c and $0 \leq p_T^2 \leq 11$ (GeV/c)².
- Besides, the Λ - $\overline{\Lambda}$ production asymmetries as a function of x_F and p_T were measured for each beam over the ranges $0.1 \leq x_F \leq 1$ and $0 \leq p_T \leq 3.25$ GeV/c and $0 \leq p_T^2 \leq 11$ (GeV/c)².
- The Blankenbecler and Brodsky model does NOT work for the inclusive production of Λ , $\overline{\Lambda}$ and K_s as a function of x_F and p_T .