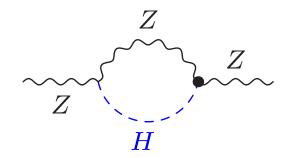
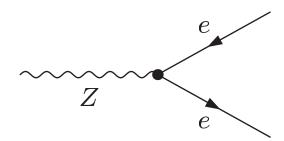
2-Loop Electroweak Corrections to the Effective Leptonic Weak Mixing Angle

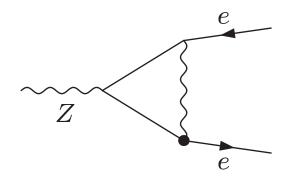

Ulrich Meier, MPI für Physik München in collaboration with Wolfgang Hollik and Sandro Uccirati

Topics

- tests of the SM
- calculation of radiative corrections
- the effective leptonic weak mixing angle

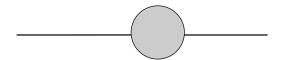
testing the SM

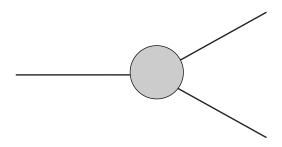

- precise measurements
- precise theoretical predictions (calculation of radiative corrections)
- access to all sectors of the SM,
 e.g. Higgs sector


- SM: treat Higgs mass as a free parameter
 - bounds on the Higgs mass
 - comparison with experimental results from direct Higgs search

radiative corrections

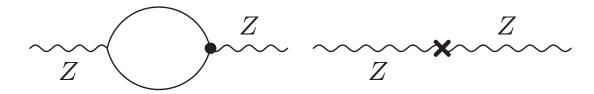
• 0.order (tree level): no closed loops


• 1. order : one closed loop


• ...

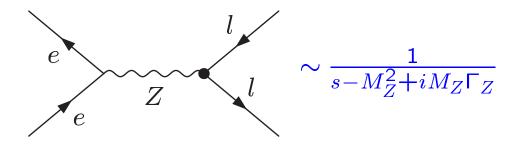
N-point functions

processes with two external particles:2-point functions (self-energies)


processes with three external particles:3-point functions (vertices)

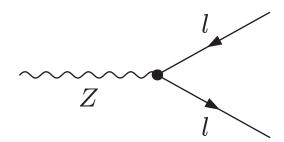
• ...

regularization/renormalization


- integration over loop momenta
 ⇒divergences
- regularization : introduce a cut-off
- relations
 free parameters ↔ observables
 cut-off dependent
- renormalization: replace bare parameters/fields: $M_0^2 = M^2 + \delta M_{(1)}^2 + \delta M_{(2)}^2 + \cdots$
- → ren. Lagrangian + counter term part

Z resonance

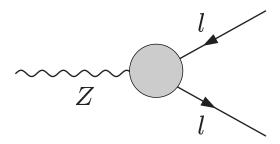
• LEP1: many events


$$e^+e^- \rightarrow l^+l^-$$
 at $s \sim M_Z^2$

- theory: Z pole approximation
 - neglect non-resonating contributions
 - $set s = M_Z^2$
- ⇒ radiative corrections can be absorbed into the couplings:
 - ⇒ effective couplings

Zll-vertex

tree-level:



matrix element:

$$\mathcal{M}_{born} = \bar{u}\gamma_{\alpha} \left[\mathbf{g}_{v} - \mathbf{g}_{a}\gamma_{5} \right] v \epsilon_{Z}^{\alpha}$$

 $g_{v/a}$: vector/axial born coupling

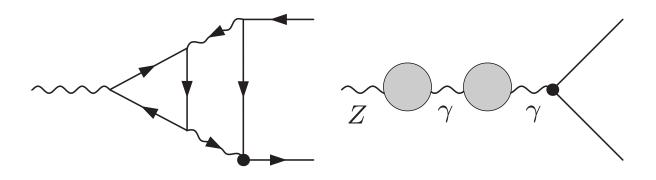
loop-order:

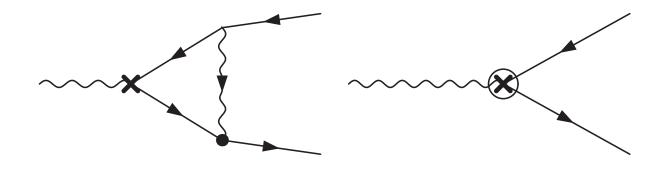
$$\mathcal{M}_{eff} = \bar{u}\gamma_{\alpha} \left[\mathcal{G}_{V}^{eff} - \mathcal{G}_{A}^{eff}\gamma_{5} \right] v\epsilon_{Z}^{\alpha}$$

 $G_{V/A}^{eff}$: vector/axial effective coupling

effective leptonic mixing angle

• tree level: $\sin^2 \Theta_W = \frac{1}{4} \left(1 - \frac{g_v}{g_a} \right)$


$$\bullet \ \text{def.: } \sin^2\Theta^{lept}_{eff} := \tfrac{1}{4} \left(\mathbf{1} - \Re \left\{ \frac{\mathcal{G}_V^{eff}}{\mathcal{G}_A^{eff}} \right\} \right)$$


- ullet very sensitive to M_H
- \bullet exp.: asymmetries of the Z resonance $\sin^2\Theta_{eff}^{lept} = 0.23150 \pm 0.00016$
- linear collider: expected precision 1.3×10^{-5} !
- ⇒ precise theoretical prediction needed

existing calculations (summer 2004)

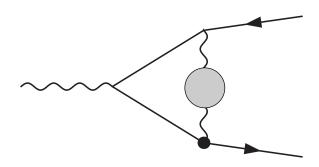
- One loop corrections $\mathcal{O}\left(\alpha\right)$ Marciano, Sirlin '80
- QCD corrections $\mathcal{O}\left(\alpha\alpha_s\right)$ and $\mathcal{O}\left(\alpha\alpha_s^2\right)$ Djouadi '88 Chetyrkin, Kühn, Steinhauser '95
- ullet electroweak 2 loop corrections $\mathcal{O}\left(lpha^2 \right)$
 - 2 gauge-invariant subsets: fermionic/bosonic corrections
 - only leading terms in a top-mass expansion $\mathcal{O}\left(\alpha^2 M_t^4\right)$ and $\mathcal{O}\left(\alpha^2 M_t^2\right)$ Degrassi, Gambino, Sirlin '97
- \Rightarrow complete $\mathcal{O}\left(\alpha^2\right)$ corrections necessary

typical diagrams

Calculation of two-loop corrections

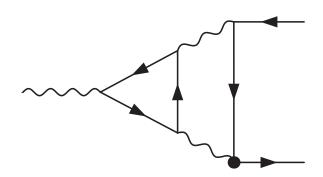
- problems:
 - 2-loop renormalization
 - 2-loop vertices
- strategy: split into two UV-finite parts

$$\widehat{\Gamma}_{(2)}^{Z\overline{l}l}\left(M_Z^2\right) \ = \ \Gamma_{(2)}^{Z\overline{l}l}\left(M_Z^2\right) + \delta Z_{(2)}^{Z\overline{l}l} =$$


$$\begin{pmatrix} \Gamma_{(2)}^{Z\bar{l}l}\left(0\right) + \delta Z_{(2)}^{Z\bar{l}l} \end{pmatrix} + \begin{pmatrix} \Gamma_{(2)}^{Z\bar{l}l}\left(M_Z^2\right) - \Gamma_{(2)}^{Z\bar{l}l}\left(0\right) \end{pmatrix}$$
 finite finite

- first term : complete 2-loop
 renormalization but no 2-loop vertices
- second term : all 2-loop vertices
 but simple divergence-structure

Calculation of two-loop corrections


- main problem: 2-loop vertices
- different approaches to calculate them
- fermionic contributions calculated
 Awramik, Czakon, Freitas, Weiglein '04
- new: independent calculation with different methods

typical diagrams

dispersion relation

→ one-dimensional integral representation

Feynman-parameters, analytical manipulations Ferroglia, Passera, Passarino, Uccirati → up to 4-dimensional integration

results for $\Delta \kappa \left([\Delta \kappa] = 10^{-4} \right)$

$$\sin^2 \theta_{eff}^{lept} =: (1 - M_W^2 / M_Z^2) (1 + \Delta \kappa).$$

$M_H [GeV]$	$\mathcal{O}\left(lpha ight)$	$\mathcal{O}\left(\alpha^2\right)$	prev. calc.
100	438.937	-0.633(1)	-0.63
200	419.599	-2.161(1)	-2.16
600	379.560	-5.008(1)	-5.01
1000	358.619	-4.733(1)	-4.73

$\overline{M_H [GeV]}$	2 ferm. loops	1 ferm. loop
100	13.758	-14.391(1)
200	13.758	-15.919(1)
600	13.758	-18.766(1)
1000	13.758	-18.491(1)

$$M_W=80.426$$
 GeV, $M_Z=91.1876$ GeV, $\Gamma_Z=2.4952$ GeV, $m_t=178.0$ GeV, $\Delta\alpha\left(M_Z^2\right)=0.05907$, $\alpha_s\left(M_Z^2\right)=0.117$, $G_\mu=1.16637\times 10^{-5}$.

Conclusions and outlook

- effective leptonic weak mixing angle is an important precision observable
- electroweak 2-loop corrections are needed
- we performed an independent calculation of the fermionic corrections in agreement with Awramik, Czakon, Freitas, Weiglein
- bosonic corrections will be approached with the same methods