FACTORIZATION OF HEAVY-TO-LIGHT FORM FACTORS FOR NON-RELATIVISTIC BOUND STATES

[G. Bell, Th. Feldmann - hep-ph/0509347, work in progress]

GUIDO BELL - MUNICH

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

PARTICLE PHYSICS SCHOOL

MUNICH

HEAVY-TO-LIGHT FORM FACTORS

NON-RELATIVISTIC APPROXIMATION

FORM FACTORS IN NR LIMIT

CONCLUSIONS

FACTORIZATION OF HEAVY-TO-LIGHT FORM FACTORS FOR NON-RELATIVISTIC BOUND STATES - GUIDO BELL PARTICLE PHYSICS SCHOOL MUNICH - NOVEMBER 2005

 $\langle \pi(p') | \bar{u} \gamma^{\mu} b | \bar{B}(p) \rangle = F_{+}(q^{2}) (p^{\mu} + {p'}^{\mu}) + F_{-}(q^{2}) q^{\mu}$ (q = p - p')

 $\langle \pi(p') | \bar{u} \gamma^{\mu} b | \bar{B}(p) \rangle = F_{+}(q^{2}) (p^{\mu} + {p'}^{\mu}) + F_{-}(q^{2}) q^{\mu} \qquad (q = p - p')$

Knowledge: crucial

- encode strong interaction effects in $B \rightarrow \pi \ell \nu, \ldots$
 - \rightarrow exclusive measurement of $|V_{ub}|$
- appear as non-perturbative input in QCD Factorization $B \rightarrow \pi \pi, B \rightarrow \pi K, \ldots$
 - \rightarrow important for CKM analysis

[Beneke / Buchalla / Neubert / Sachrajda 99, 00]

$$\langle \pi(p') | \bar{u} \gamma^{\mu} b | \bar{B}(p) \rangle = F_{+}(q^{2}) (p^{\mu} + p'^{\mu}) + F_{-}(q^{2}) q^{\mu} \qquad (q = p - p')$$

Understanding: demanding

- \blacktriangleright contain long-distance effects \rightarrow cannot be calculated in perturbation theory
- ▶ $q^2 \gtrsim 16 \text{ GeV}^2$ Lattice QCD

- energetic pions?
- ▶ $q^2 \leq 16 \text{ GeV}^2$ QCD light-cone sum rules \rightarrow model dependence ?
- Alternatives ?

Factorization

Advantage: perturbative scale $m_b \gg \Lambda_{had}$

- Form Factors contain long-distance ($\sim \Lambda$) and short-distance ($\sim m_b$) effects
- provide small expansion parameter $\frac{\Lambda}{m_b} \ll 1$

Factorization

Advantage: perturbative scale $m_b \gg \Lambda_{had}$

- Form Factors contain long-distance (~ Λ) and short-distance (~ m_b) effects
- provide small expansion parameter $\frac{\Lambda}{m_b} \ll 1$
- Idea: disentangle short- and long-distance effects $m_b \gg \mu_F \gg \Lambda$
 - short-distance effects calculable in perturbation theory
 - reduce # of independent hadronic parameters

Factorization

Advantage: perturbative scale $m_b \gg \Lambda_{had}$

- Form Factors contain long-distance (~ Λ) and short-distance (~ m_b) effects
- provide small expansion parameter $\frac{\Lambda}{m_b} \ll 1$
- Idea: disentangle short- and long-distance effects $m_b \gg \mu_F \gg \Lambda$
 - short-distance effects calculable in perturbation theory
 - reduce # of independent hadronic parameters

Realization: Effective Field Theories (HQET, SCET, NRQCD, ...)

- systematic power-expansion, can estimate uncertainties
- model-independent
- Iow energy symmetries become transparent
- resum logarithms using RG-techniques

FACTORIZATION OF HEAVY-TO-LIGHT FORM FACTORS FOR NON-RELATIVISTIC BOUND STATES - GUIDO BELL PARTICLE PHYSICS SCHOOL MUNICH - NOVEMBER 2005

[Bauer / Fleming / Pirjol / Stewart 00,01] [Beneke / Chapovsky / Diehl / Feldmann 02]

long-distance modes

- heavy quark: $\Delta p^{\mu} \sim \Lambda$
- soft spectators: $p_s^{\mu} \sim \Lambda$

 $E_\pi \sim m_b$

long-distance modes

- heavy quark: $\Delta p^{\mu} \sim \Lambda$
- soft spectators: p^μ_s ~ Λ
- collinear quarks and gluons: $E_c \sim m_b, \quad p_c^2 \sim \Lambda^2$

long-distance modes

- heavy quark: $\Delta p^{\mu} \sim \Lambda$
- soft spectators: p^μ_s ~ Λ
- collinear quarks and gluons: $E_c \sim m_b, \quad p_c^2 \sim \Lambda^2$

short-distance modes

- hard modes: (heavy quark + coll.)² ~ m²_h
- hard-collinear modes: (soft + coll.)² $\sim m_b \Lambda$

long-distance modes

- heavy quark: $\Delta p^{\mu} \sim \Lambda$
- soft spectators: p^μ_s ~ Λ
- collinear quarks and gluons: $E_c \sim m_b, \quad p_c^2 \sim \Lambda^2$

scales:

 $m_b \gg QCD$

short-distance modes

- hard modes: (heavy quark + coll.)² ~ m²_h
- hard-collinear modes:
 (soft + coll.)² ~ m_bΛ

$$\sqrt{m_b\Lambda} \gg \Lambda$$

SCET₁ HQET/SCET₁₁

[Beneke / Feldmann 00,03] [Bauer / Pirjol / Stewart 02] [Lange / Neubert 03]

Form factors $F_i(q^2) \propto \langle \pi(p') | \bar{u} \Gamma_i b | \bar{B}(p) \rangle$ for $q^2 \ll m_b^2$

$$\mathcal{F}_i(q^2) = \mathcal{T}_i^I(q^2) \ \xi_\pi(q^2) \ + \ \phi_{\mathcal{B}} \otimes \ \mathcal{T}_i^{II}(q^2) \ \otimes \phi_\pi \ + \ \mathcal{O}\left(rac{\Lambda}{m_b}
ight)$$

- ► $T_i'(q^2)$ perturbative hard-coefficient function
- ► $\xi_{\pi}(q^2)$ universal form factor [\rightarrow symmetry relations]

[Charles / Le Yaouanc / Oliver / Pène / Raynal 98]

- ► $T_i''(q^2)$ perturbative hard-scattering kernel
- ϕ_B, ϕ_{π} process-independent light-cone wave functions

[Beneke / Feldmann 00,03] [Bauer / Pirjol / Stewart 02] [Lange / Neubert 03]

Form factors $F_i(q^2) \propto \langle \pi(p') | \bar{u} \Gamma_i b | \bar{B}(p) \rangle$ for $q^2 \ll m_b^2$

$$\mathcal{F}_i(q^2) = \mathcal{T}_i^I(q^2) \ \xi_\pi(q^2) \ + \ \phi_{\mathcal{B}} \otimes \ \mathcal{T}_i^{II}(q^2) \ \otimes \phi_\pi \ + \ \mathcal{O}\left(rac{\Lambda}{m_b}
ight)$$

T^{*i*}_{*i*}(*q*²) perturbative hard-coefficient function
 *ξ*_π(*q*²) universal form factor [→ symmetry relations]

[Charles / Le Yaouanc / Oliver / Pène / Raynal 98]

- $T_i''(q^2)$ perturbative hard-scattering kernel
- ϕ_B, ϕ_{π} process-independent light-cone wave functions

 $T_i^{l}(q^2) = 1 + \mathcal{O}(\alpha_s)$ approx. symmetry relations for $F_i(q^2)$ $T_i^{ll}(q^2) = \mathcal{O}(\alpha_s)$ sym. breaking correct. perturbative (and $1/m_b$)

[Beneke / Feldmann 00,03] [Bauer / Pirjol / Stewart 02] [Lange / Neubert 03]

Form factors $F_i(q^2) \propto \langle \pi(p') | \bar{u} \Gamma_i b | \bar{B}(p) \rangle$ for $q^2 \ll m_b^2$

$$\mathcal{F}_i(q^2) = \mathcal{T}_i^I(q^2) \ \xi_\pi(q^2) \ + \ \phi_{\mathcal{B}} \otimes \ \mathcal{T}_i^{II}(q^2) \ \otimes \phi_\pi \ + \ \mathcal{O}\left(rac{\Lambda}{m_b}
ight)$$

- ► $T'_i(q^2)$ perturbative hard-coefficient function
- ► $\xi_{\pi}(q^2)$ universal form factor [\rightarrow symmetry relations]

[Charles / Le Yaouanc / Oliver / Pène / Raynal 98]

- $T_i''(q^2)$ perturbative hard-scattering kernel
- ϕ_B, ϕ_{π} process-independent light-cone wave functions
 - QCD light-cone sum rules \rightarrow $F_i(q^2)$ [Ball / Zwicky 01,04]SCET light-cone sum rules \rightarrow $\xi_{\pi}(q^2)$ [De Fazio / Feldmann / Hurth 05]

[Beneke / Feldmann 00,03] [Bauer / Pirjol / Stewart 02] [Lange / Neubert 03]

Form factors $F_i(q^2) \propto \langle \pi(p') | \bar{u} \Gamma_i b | \bar{B}(p) \rangle$ for $q^2 \ll m_b^2$

$$m{\mathcal{F}}_i(m{q}^2) = m{T}_i'(m{q}^2) \ \xi_\pi(m{q}^2) \ + \ \phi_{m{B}} \otimes \ m{T}_i''(m{q}^2) \ \otimes \phi_\pi \ + \ \mathcal{O}\left(rac{\Lambda}{m_b}
ight)$$

non-factorizable factorizable

- $T'_i(q^2)$ perturbative hard-coefficient function
- ► $\xi_{\pi}(q^2)$ universal form factor [\rightarrow symmetry relations]

[Charles / Le Yaouanc / Oliver / Pène / Raynal 98]

- ► $T_i''(q^2)$ perturbative hard-scattering kernel
- ϕ_B , ϕ_π process-independent light-cone wave functions

 $\xi_{\pi}(q^2)$ does not factorize into soft and collinear regions (Feynman mechanism, endpoint singularities, Sudakov Logarithms)

Non-relativistic Approximation

Consider NR $q\bar{q}$ bound state

• expansion in relative velocity $v = |\vec{v}| \ll 1$ in CMS

Non-relativistic Approximation

Consider NR $q\bar{q}$ bound state

• expansion in relative velocity $v = |\vec{v}| \ll 1$ in CMS

Leading contribution in NR expansion

potential gluons $q^0 = \mathcal{O}(m_r v^2)$ $\vec{q} = \mathcal{O}(m_r v)$

Non-relativistic Approximation

Consider NR $q\bar{q}$ bound state

• expansion in relative velocity $v = |\vec{v}| \ll 1$ in CMS

Leading contribution in NR expansion

Heavy-to-light Form Factors in NR picture

Consider $Q\bar{q} \longrightarrow q\bar{q}$ with quark masses $M \gg m \gg \Lambda_{QCD}$ • "Heavy Meson" $M_h \simeq M + m \simeq M$ $p = M_h w$ • "Light Meson" $M_l \simeq 2m$ $p' = M_l w'$

Relevant scales:

Heavy-to-light Form Factors in NR picture

Consider $Q\bar{q} \longrightarrow q\bar{q}$ with quark masses $M \gg M \gg \Lambda_{QCD}$

▶ "Heavy Meson" $M_h \simeq M + m \simeq M$ $p = M_h w$ ▶ "Light Meson" $M_l \simeq 2m$ $p' = M_l w'$

Relevant scales:

 $\blacktriangleright \ \mu_h \sim M \qquad \gg \qquad \mu_{hc} \sim \sqrt{Mm} \qquad \gg \qquad \mu_{s/c} \sim m \qquad \gg \qquad \mu_{NR} \sim mv$

Motivation:

- Form factors explicitly calculable in combined NR + HQ expansion (in particular $\xi_{\pi}(q^2), \phi_B, \phi_{\pi}$)
- "toy model" for $B \to \pi$ structure of Fact. Formula, $\xi_{\pi}(q^2)$
- more realistic case $B_c \rightarrow \eta_c$ for $q^2 \ll m_b^2$, $m_c \ll m_b$

Tree-Level

Direct overlap of NR wave functions

→ not sensitive to explicit shape $\psi_C(\vec{p})$ FF only depends on normalization → decay constant

Tree-Level

Direct overlap of NR wave functions

→ not sensitive to explicit shape $\psi_C(\vec{p})$ FF only depends on normalization → decay constant

Exchange of one relativistic gluon

static approximation for external quarks

$$F^{LO}_{+}(0) = rac{4\pilpha_{s}(\mu)C_{F}}{N_{c}}rac{3f_{h}f_{l}}{mM}$$
 $(E_{\pi}=rac{M}{2})$

no endpoint singularities

NLO-Calculation

• various diagrams for $B \rightarrow \pi$

- expansion in $m/M \rightarrow$ method of regions within DR
- extract non-factorizable and factorizable contributions
- additional flavour-singlet diagrams for $B_c \rightarrow \eta_c$

[Beneke, Smirnov 97]

NLO-Result

- endpoint-singularities only appear in non-factorizable contribution
- (preliminary) NLO-Result [resummation of Logs to be included!]

$$\begin{split} F_{+}^{\mathrm{NLO}}(0) &= \frac{4\pi\alpha_{S}(\mu)C_{F}}{N_{c}} \frac{3f_{h}f_{l}}{mM} \left\{ 1 + \frac{\alpha_{S}(\mu)}{4\pi} \left[b_{0} \ln \frac{2\mu^{2}}{mM} - \frac{10}{9} N_{F} + \frac{1}{3} \ln \frac{M}{4m} \right. \\ &+ C_{F} \left(\frac{1}{2} \ln^{2} \frac{M}{m} + \frac{35 - 20 \ln 2}{6} \ln \frac{M}{m} + \frac{2}{3} \ln^{2} 2 + 3 \ln 2 + \frac{7}{9} \pi^{2} - \frac{103}{6} \right) \\ &+ C_{A} \left(-\frac{1}{6} \ln^{2} \frac{M}{m} + \frac{1 + \ln 2}{3} \ln \frac{M}{m} + \frac{1}{3} \ln^{2} 2 - \frac{4}{3} \ln 2 - \frac{5}{36} \pi^{2} + \frac{73}{9} \right) \right] \Big] \end{split}$$

NLO-Result

- endpoint-singularities only appear in non-factorizable contribution
- (preliminary) NLO-Result [resummation of Logs to be included!]

$$\begin{split} F_{+}^{\rm NLO}(0) &= \frac{4\pi\alpha_{\rm S}(\mu)C_F}{N_c} \frac{3f_{\rm h}f_{\rm f}}{mM} \left\{ 1 + \frac{\alpha_{\rm S}(\mu)}{4\pi} \left[b_0 \ln \frac{2\mu^2}{mM} - \frac{10}{9}N_F + \frac{1}{3}\ln \frac{M}{4m} \right. \\ &+ C_F \left(\frac{1}{2}\ln^2 \frac{M}{m} + \frac{35 - 20\ln 2}{6}\ln \frac{M}{m} + \frac{2}{3}\ln^2 2 + 3\ln 2 + \frac{7}{9}\pi^2 - \frac{103}{6} \right) \\ &+ C_A \left(-\frac{1}{6}\ln^2 \frac{M}{m} + \frac{1 + \ln 2}{3}\ln \frac{M}{m} + \frac{1}{3}\ln^2 2 - \frac{4}{3}\ln 2 - \frac{5}{36}\pi^2 + \frac{73}{9} \right) \right] \right\} \end{split}$$

Numerical analysis: $B_c \rightarrow \eta_c$ scenario

 $M = 5 \text{ GeV} \longrightarrow \mu_{
m hc} \simeq 2.7 \text{ GeV}$ m = 1.5 GeV

Summary

NR-approximation allows for

- explicit analysis of general Factorization Formula
- "toy model" for $B \rightarrow \pi$ transition

Application: $B_c
ightarrow \eta_c \ell
u$ $(q^2 \ll m_b^2)$

- appropriate framework to include relativistic effects
- ► to be supplemented with higher-order terms from non-relativistic expansion ~ O(v²) heavy-quark expansion ~ O(m_c/m_b)

Acknowledgements:

M. Beneke (RWTH Aachen) Th. Feldmann (University of Siegen)

Appendix

Sudakov Logarithms and Endpoint Singularities

e.g. renormalization of weak decay vertex

Sudakov Logarithms and Endpoint Singularities

e.g. renormalization of weak decay vertex

- $\begin{array}{ll} [h] \sim \ln^2 \frac{M}{\mu} + \dots & [h] + [hc] + [s] \sim \ln^2 \frac{M}{m} + \dots \\ [hc] \sim \ln^2 \frac{\sqrt{Mm}}{\mu} + \dots & \rightarrow \end{array} \begin{array}{ll} \text{Sudakov Logs may be resummed} \\ [s] \sim \ln^2 \frac{m}{\mu} + \dots & QCD \rightarrow SCET_I \rightarrow SCET_{II} \end{array}$
- e.g. pentagon diagram

[c], [s] region not separately well-defined in DR, but [c] + [s] is !

$$[hc] \sim \ln^2 \frac{\sqrt{Mm}}{\mu} + \dots \\ [c] + [s] \sim \ln \frac{M}{\mu} \ln \frac{m}{\mu} \\ + \ln^2 \frac{m}{\mu} \dots$$

 $[hc] + [c] + [s] \sim \ln^2 \frac{M}{m} + \dots$ Large Logs related to endpoint singularities [c]+[s] matrix element still depends on high scale $(w \cdot w' \sim \frac{M}{m})$