Search for the MSSM Higgs boson decay A-> $\mu^+\mu^-$ with ATLAS

George Dedes

Max-Planck-Institut für Physik München

Outline

LHC - ATLAS detector Higgs physics in ATLAS SUSY - MSSM Higgs \blacksquare A-> $\mu^+ \mu^-$ decay channel ATLFAST vs FullSim Detector performance (μ – bjets) Analysis Results Summary

LHC

- LHC , p-p collider with $\sqrt{s} = 14 \text{ TeV}$
- 2 luminosity phases low luminosity : 20 fb⁻¹ per year high luminosity : 100 fb⁻¹ per year
- 4 LHC experiments (ATLAS,CMS,ALICE,LHC-B)

The ATLAS detector

<u>A Toroidal LHC ApparatuS</u>

26 m

46 m

7000 Tons

Barrel toroid length

Overall weight

End-cap end-wall chamber span

V.V	

Higgs physics in ATLAS

- Standard Model is a well established theory of particles and their interactions numerous predictions such as c, b, t quarks ,ν_τ, gluon , W , Z bosons
- W[±], Z need to acquire masses through the electroweak symmetry breaking mechanism existence of Higgs Particle predicted

Still one parameter missing: The Higgs mass

Higgs physics in ATLAS

Searches performed already in LEP and the region m_H < 114 GeV (95% CL) is excluded e⁺e⁻ -> ZH -> (qq)(bb)

Discovery channels in ATLAS $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ \rightarrow 4I$ $H \rightarrow ZZ \rightarrow II\nu\nu$ $H \rightarrow ZZ \rightarrow II\nu\nu$ $H \rightarrow WW \rightarrow II\nu\nu$ $H \rightarrow WW \rightarrow IIqq$ $H \rightarrow bb$ $H \rightarrow \tau\tau$

SUSY and MSSM

A possible extension of the SM could be SUSY

Predicts supersymmetric partners with spin difference ½ for every SM particle

In MSSM, SUSY breaking described by 105 parameters

- In MSSM Higgs sector:
 - 2 Higgs doublets
- After electroweak symmetry breaking
 5 Higgs particles => h , H , A , H[±]
 2 free parameters => m_A , tanβ

 m_A : mass of A boson tan β : ratio of the vacuum expectation values of the 2 Higgs doublets

MSSM Higgs production cross sections

GGF :	σ_{MSSM}	$= \frac{\Gamma(h(H,A) \rightarrow gg)_{MSSM}}{\Gamma(H_{SM} \rightarrow gg)_{SM}} \times \sigma_{SM}$
VBF :	$\sigma_{MSSM}(h)$	$=\sin^2(\alpha-\beta)\times\sigma_{SM}$
	$\sigma_{MSSM}(H)$	$=\cos^2(\alpha-\beta)\times\sigma_{SM}$
$W(Z)\Phi$:	$\sigma_{MSSM}(h)$	$=\sin^2(\alpha-\beta)\times\sigma_{SM}$
	$\sigma_{MSSM}(H)$	$=\cos^2(\alpha-\beta)\times\sigma_{SM}$
$bb\Phi$:	$\sigma_{MSSM}(h)$	$=\sin^2(\alpha)/\cos^2(\beta) \times \sigma_{SM}$
	$\sigma_{MSSM}(H)$	$=\cos^2(\alpha)/\cos^2(\beta) \times \sigma_{SM}$
	$\sigma_{MSSM}(A)$	$= an^2(eta) imes \sigma_{SM}$
$tt\Phi$:	$\sigma_{MSSM}(h)$	$=\sin^2(\alpha)/\sin^2(\beta)\times\sigma_{SM}$
	$\sigma_{MSSM}(H)$	$=\cos^2(\alpha)/\sin^2(\beta) \times \sigma_{SM}$
	$\sigma_{MSSM}(A)$	$= \cot^2(\beta) \times \sigma_{SM}$
$\rightarrow H^{\pm}t$:	σ_{MSSM}	$= [(M_b \tan \beta)^2 + (M_t \cot \beta)^2] \times \sigma_{SM}$

gl

 MSSM cross section are given by SM production cross sections times MSSM correction factors

 α : mixing angle between CP-even neutral H bosons
 tanβ : ratio of the vacuum expectation values of

the 2 Higgs doublets

- Dominant decay channel is bbar
 Leptonic decays to *ττ* and μμ
- Rates for μμ governed by the same couplings as for ττ but BR scales

as $(m_{\mu}/m_{\tau})^2$

MSSM Higgs searches

- If SUSY particles masses are large, MSSM H decays only to SM particles
- Higgs searches can therefore be performed in different decay channels (usually with SM particles in the final state)

LEP(OPAL) limits : m_h>84.5 GeV and m_A>85 GeV (95% CL)

- The complete region of parameter space (m_A=50 − 500 GeV, tanβ = 1-50) accessible in ATLAS, but
- Difficult regions: intermediate tanβ and masses (m_A) where only h would be observable

Our interest is exploring the discovery potential of: $H/A \rightarrow \mu\mu$, $H/A \rightarrow \tau\tau$

Simulation Software

PYTHIA generator program used

2 possible ways to simulate data :

<u>ATLFAST:</u> A fast simulation program with parametrised detector response (Less accurate – Less CPU time consuming)

<u>Full Simulation:</u> A detailed description of the detector response by following every particle in each measurement unit of the detector (More accurate – More CPU time consuming)

Study with ATLFAST already done Now finishing analysis with fully simulated data

$A - > \mu^+ \mu^-$ decay channel

Cannot be observed for SM Higgs
small BR, too large background

In MSSM enhanced production rates with respect to the SM

 $\sigma_{MSSM} = (\tan\beta)^2 \times \sigma_{SM}$

- Higher BR comparing to SM (SM BR comparable only for M_A < 160GeV, then suppressed by the opening of the gauge boson channel)
- Two production mechanisms

For large tan β (>10), associate production becomes dominant

Signal

Clean signature from 2 high p_T muons
 In associated production 2 tagging b-jets

For bbA->bb($\mu^+\mu^-$), m_A=300 GeV, tan β = 30: ($\sigma \times BR$)_{signal} ~ 5 fb

Background

Large background contribution from the following processes:

• $(\sigma x BR)_B$ is $(10^3 - 10^6)x(sx BR)s$ Strong rejection needed

ATLFAST vs FullSim (muons)

Very good agreement between fast and full simulation

5 **Vormalized number**

ATLFAST vs FullSim (bjets)

More bjets are reconstructed in full simulation, leading to slightly bigger efficiency

ATLFAST

FullSim

Detector Performance (muons)

Average muon efficiency ~ 90%

Detector Performance (bjets)

Average b-tagging efficiency of ~ 50%

Discriminating variables

— bbA

Analysis scheme

Analysis scheme

Results (ATLFAST)

Data samples produced with ATLFAST

Data	N events
$A \rightarrow \mu^+ \mu^-$	20.000
$bbA ightarrow \mu^+ \mu^-$	20.000
$Z/\gamma^* \rightarrow \mu^+ \mu^-$	1.000.000
$Z(\rightarrow \mu^+\mu^-)$ +jet	1.000.000
tt→(μνb) (μνb)	1.000.000

- $tan\beta = 30$, L = 30 fb⁻¹
- tt background dominant

Results (ATLFAST)

	150GeV	200GeV	250GeV	300GeV	350GeV	450GeV
Signal significance	12.6	5.1	2.6	4.2	2.1	0.7

Can be further improved by using the properties of bjets

	150GeV	200GeV	250GeV	300GeV	350GeV	450GeV
no p _T ^{bjet} cut	12.6	5.1	2.6	4.2	2.1	0.7
p _T ^{bjet} cut	12.1	4.6	2.6	5.1	2.4	1.1

5σ discovery curves at L=30 fb⁻¹

before – after additional cuts

Results

■ Signal significance at m_A = 300 GeV , tanβ=30 , L=30 fb⁻¹ (1,5 - 3 years running at initial luminosity)

$$N_{S,B} = \left(n_{S,B}^{selected}\right) \cdot \frac{\left(\sigma \times BR\right)_{S,B} \cdot \mathcal{L}}{n_{S,B}^{total}}$$

$$N_{S,B} = \left(n_{S,B}^{selected}\right) \cdot \frac{\left(\sigma \times BR\right)_{S,B} \cdot \mathcal{L}}{n_{S,B}^{total}}$$

$$\frac{\Gamma}{n_{S,B}^{total}} : \text{ integrated luminosity}}{n_{S,B}^{total}} : \text{ number of events generated}$$

$$\frac{\Gamma}{bbA \rightarrow \mu^{+}\mu^{-}}$$

$$\frac{32.000}{tt \rightarrow (\mu\nu b) (\mu\nu b)} \sim 71.000$$

$$\frac{\text{FullSim}}{s = \frac{n_s}{\sqrt{n_B}}} = 2.4 \pm 0.2$$

- Only tt background!
- Only A boson, not H/A combined

Invariant mass

 $m_A=300~GeV$, $tan\beta{=}30$, $L{=}30~fb^{{-}1}$

Summary

- Possibility and limits for discovery of one additional Higgs particle (MSSM, heavy, neutral) in ATLAS
- **Discovery potential of A->** $\mu^+\mu^-$ already explored with ATLFAST
- First results of fully simulated data analysis
- ATLFAST and FullSim seem to be in agreement, but
- Some differences have to be investigated and exploited for fine tuning of FullSim analysis
- More background data and different Higgs masses to be produced

• Moving to MSSM A-> $\tau\tau$ decays

