SEARCH FOR SECOND GENERATION SCALAR LEPTOQUARKS AT TEVATRON

IMPRS SEMINAR

Philippe Calfayan

Ludwig-Maximilians University, Munich

January 13, 2006

OUTLINE

The Tevatron The DØ Detector Leptoquarks at Tevatron Monte-Carlo Analysis Conclusion

LUMINOSITY

Schematic View of DØ

THE TRACKING SYSTEM

Silicon Microstrip Tracker

The Calorimeter

The Muon Detection System

LEPTOQUARKS (LQ)

Leptoquarks are new bosons allowing lepton-quark transitions.

Theoretical Motivation:

Grand Unified Theories gather leptons and quarks within the same multiplets. Leptoquarks, which couple to both leptons and quarks, are predicted as new gauge bosons.

For instance, R-Parity violated SUSY theories allow leptoquark-like couplings, since a squark could couple to a lepton and a quark.

The Effective Leptoquark Model

The *Minimum Buchmüller-Rückl-Wyler model* (mBRW) allows relative small leptoquark masses in reach of hadron colliders like Tevatron.

It assumes that leptoquarks fulfill these conditions:

- \rightarrow have renormalizable interactions
- $\rightarrow\,$ have interactions invariant under SM gauge groups SU(3) \otimes SU(2) \otimes U(1)
- $\rightarrow\,$ couple to SM fermions and gauge bosons (usually, by contrast to squarks)
- $\rightarrow\,$ conserve the leptonic and baryonic numbers separately
- $\rightarrow\,$ each couple only to a single lepton-quark generation (to prevent FCNC)
- $\rightarrow~$ each have pure chiral couplings to SM fermions

This model leads to seven *scalar* and seven *vector* leptoquarks carrying the fermionic number:

$$F = 3 B + L$$

PRODUCTION AND DECAY

Single LQ production:

The cross-section depends on the unknown λ coupling between a leptoquark, a lepton and a quark.

Pair LQ production:

(pure QCD processes)

PAIR PRODUCTION CROSS-SECTION

- $\rightarrow\,$ The pair production cross-section of scalar LQ can be written as a function of the LQ mass only.
- $\rightarrow\,$ The pair production cross-section of vector LQ depends on unknown anomalous couplings.

SIGNAL & BACKGROUND

\rightarrow Signal:

We consider the pair production of scalar LQ in the case where one of them decays to a *muon* and a *quark*, and the other to a *neutrino* and a *quark*. PYTHIA has been patched so that the two LQ decay to different final states.

\rightarrow Main Background:

→ Samples:

Sample	σ_{NLO} (pb)	Number of Events	MC generator
LQ (220 GeV)	0.14		
LQ (240 GeV)	0.08	10k	PYTHIA
LQ (260 GeV)	0.04		
Wjj (Pt>8 GeV, R>0.4)	290	160k	ALPGEN

QUALITY CUTS

Good Muon:

- \rightarrow loose quality (number of hits in layers)
- \rightarrow has a central track
- $\rightarrow~>1$ hits in SMT
- \rightarrow region cut
- \rightarrow isolated
- \rightarrow P_T > 15 GeV
- \rightarrow not cosmic

Good Jet:

- \rightarrow standard quality criteria (EM, CH fractions, ...)
- \rightarrow region cut
- \rightarrow E_T > 25 GeV

To remove bad reconstructed high energetic muons, we ask for $\Delta\phi(\mu,\nu)>$ 3.

Cumulated efficiencies:

Samples	good μ	2 good jets	$\not\!$	$\Delta \phi(\mu, u) > 3$
LQ (260 GeV)	0.58	0.47	0.46	0.42
Wjj (Pt>8 GeV, R>0.4)	0.50	0.037	0.026	0.024

SELECTION CUTS

$$\rightarrow$$
 S_T definition: $S_T = E_T + P_T^{\mu_1} + E_T^{jet_1} + E_T^{jet_2}$

Ludwig-Maximilians University, Munich

CUT OPTIMISATION

The cuts on $M_{\mu\nu}$ and S_T are optimized by cutting in the space $(M_{\mu\nu},S_T)$ so as to minimize the 95% C.L. cross-section limit, which is calculated for a luminosity of 500 pb $^{-1}$, with 10% of systematics error for the signal and 30% for the background.

Expected cross section (95% C.L.)

Selection Cut Efficiencies

 \rightarrow Optimized cuts efficiencies (cumulated, after preselection):

Samples	$M_{\mu u}>$ 140 GeV	$S_{\mathcal{T}} > 410 ~GeV$
LQ (260 GeV)	0.26	0.22
Wjj	0.00029	3.1×10^{-5}

 \rightarrow We apply these cuts to the other LQ samples (220 and 240 GeV)

Samples	$\sigma_{95\%CL}^{mc}$ (pb)	Signal Efficiency	Nb Bgd Evts (L=500 pb^{-1})
LQ (220 GeV)	0.097	0.15	
LQ (240 GeV)	0.078	0.18	4.47
LQ (260 GeV)	0.065	0.22	

(After all cuts)

EXCLUSION REGION

 \rightarrow The masses 220, 240, and 260 GeV cannot be excluded.

$$\begin{cases} BR(LQ \to l^{\pm}q) = \beta \\ BR(l\nu qq) = 2\beta(1-\beta) \end{cases}$$

→ Current Results on Second Generation Scalar Leptoquarks:

Combined results:

. Run I :
$$L \simeq 94 \ pb^{-1}, \sqrt{s} = 1.8 \ {\rm TeV}$$

. Run II : $L \simeq 294 \ pb^{-1}$, $\sqrt{s} = 1.96 \ {\rm TeV}$

CONCLUSION

• Promising Analysis:

- $\label{eq:model} \begin{array}{l} \rightarrow \mbox{ More than 1 } fb^{-1} \mbox{ of luminosity is} \\ \mbox{ available} \end{array}$
- $\rightarrow\,$ Good variables to make out the signal from the background

• Next Steps:

- \rightarrow Process real data
- $\rightarrow~$ Understand the data-MC comparison
- \rightarrow Put a limit on the LQ mass if no evidence of LQ
- $\rightarrow\,$ Combine results with other LQ decay channels

