Hard Spectator Interactions in $B \rightarrow \pi \pi$

Volker Pilipp

Arnold Sommerfeld Center University of Munich

IMPRS Seminar, München 2006

QCD-Factorization

Feynman Diagrams for $B \rightarrow \pi \pi$

Hard Spectator Interactions

 Complex phase in CKM-matrix V leads to CP-asymmetry in SM

- Complex phase in CKM-matrix V leads to CP-asymmetry in SM
- This phase can be parametrized by the unitary triangle using the unitarity of V especially the relation

- Complex phase in CKM-matrix V leads to CP-asymmetry in SM
- This phase can be parametrized by the unitary triangle using the unitarity of V especially the relation

So we have $V_{ud}V_{ub}^* \sim e^{i\gamma}$ and $V_{td}V_{tb}^* \sim e^{-i\beta}$ The angle β is well determined by $B \rightarrow J/\psi K_S$

- Complex phase in CKM-matrix V leads to CP-asymmetry in SM
- This phase can be parametrized by the unitary triangle using the unitarity of V especially the relation

So we have $V_{ud} V_{ub}^* \sim e^{i\gamma}$ and $V_{td} V_{tb}^* \sim e^{-i\beta}$

- The angle β is well determined by $B \rightarrow J/\psi K_S$
- For the angles α, γ controlling of hadronic quantities in decays like B → ππ is needed

B-decays and CKM-angles

Tree diagram

B-decays and CKM-angles

Tree diagram

Penguin diagram

QCD-Factorization Beneke, Buchalla, Neubert, Sachrajda hep-ph/0006124

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Two energy scales in decays $B \rightarrow \pi \pi$:
 - ▶ *m_b* (5GeV)
 - Λ_{QCD} (500 MeV)

QCD-Factorization Beneke, Buchalla, Neubert, Sachrajda hep-ph/0006124

- Two energy scales in decays $B \rightarrow \pi \pi$:
 - ▶ *m_b* (5GeV)
- ∧_{QCD} (500 MeV)
 In leading power in ^{A_{QCD}}/_{m_b}

$$\langle \pi \pi | \hat{H} | B \rangle = F^{B \to \pi}(0) \int_0^1 du \, T'(u) \phi_{\pi}(u)$$

$$+ \int_0^1 d\xi dv du \, \phi_B(\xi) \phi_{\pi}(u) \phi_{\pi}(v) T''(\xi, u, v)$$

OCD-Factorization Beneke. Buchalla, Neubert, Sachrajda hep-ph/0006124

- Two energy scales in decays $B \rightarrow \pi \pi$:
 - ▶ *m_b* (5GeV)
- ∧_{QCD} (500 MeV)
 In leading power in ^{A_{QCD}}/_{m_b}

$$\langle \pi \pi | \hat{H} | B \rangle = F^{B \to \pi}(0) \int_0^1 du \, T'(u) \phi_\pi(u)$$

$$+ \int_0^1 d\xi dv du \, \phi_B(\xi) \phi_\pi(u) \phi_\pi(v) T''(\xi, u, v)$$

- 1. Form factor $F^{B\to\pi}$ and light-cone distribution amplitudes ϕ_{B} , ϕ_{π}
 - contain the hadronic physics of the energy scale Λ_{QCD}

- non-perturbative
- process independent

OCD-Factorization Beneke. Buchalla, Neubert, Sachrajda hep-ph/0006124

- Two energy scales in decays $B \rightarrow \pi \pi$:
 - ▶ *m_b* (5GeV)
- ∧_{QCD} (500 MeV)
 In leading power in ^{A_{QCD}}/_{m_b}

$$\langle \pi \pi | \hat{H} | B \rangle = F^{B \to \pi}(0) \int_0^1 du \, T'(u) \phi_\pi(u)$$

$$+ \int_0^1 d\xi dv du \, \phi_B(\xi) \phi_\pi(u) \phi_\pi(v) T''(\xi, u, v)$$

- 1. Form factor $F^{B\to\pi}$ and light-cone distribution amplitudes ϕ_{B} , ϕ_{π}
 - contain the hadronic physics of the energy scale Λ_{QCD}
 - non-perturbative
 - process independent
- 2. Hard scattering kernels T' and T''
 - contain the physics of the energy scale m_b
 - perturbatively calculable
 - process dependent

OCD-Factorization Beneke, Buchalla, Neubert, Sachrajda hep-ph/0006124

- Two energy scales in decays $B \rightarrow \pi \pi$:
 - ▶ *m_b* (5GeV)
- ∧_{QCD} (500 MeV)
 In leading power in ^{A_{QCD}}/_{m_b}

$$\langle \pi \pi | \hat{H} | B \rangle = F^{B \to \pi}(0) \int_0^1 du \, T'(u) \phi_\pi(u)$$

$$+ \int_0^1 d\xi dv du \, \phi_B(\xi) \phi_\pi(u) \phi_\pi(v) T''(\xi, u, v)$$

- 1. Form factor $F^{B\to\pi}$ and light-cone distribution amplitudes ϕ_{B} , ϕ_{π}
 - contain the hadronic physics of the energy scale Λ_{QCD}
 - non-perturbative
 - process independent
- 2. Hard scattering kernels T' and T''
 - contain the physics of the energy scale m_b
 - perturbatively calculable
 - process dependent
- \Rightarrow Separation of short- and long-distance effects, a = 1000

When does QCD-Factorization not work?

- Infrared (IR) singularities remain from loop integrals
 - Formally: IR singularities cannot be absorbed into counter terms
 - \Rightarrow Expansion in Λ_{QCD}/m_B is inconsistent
 - Amplitude is dominated by soft gluon exchange
 ⇒ Separation into short- and long-distance effects does no longer work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

When does QCD-Factorization not work?

- Infrared (IR) singularities remain from loop integrals
 - Formally: IR singularities cannot be absorbed into counter terms
 - \Rightarrow Expansion in Λ_{QCD}/m_B is inconsistent
 - Amplitude is dominated by soft gluon exchange
 ⇒ Separation into short- and long-distance effects does no longer work
- Endpoint singularities occur from integrals over meson wave functions i.e.

$$\int_0^1 d\xi dv du \phi_\pi(u) \phi_\pi(v) \phi_B(\xi) T(\xi, u, v)$$

diverges for $u, v \rightarrow 0, 1$ or $\xi \rightarrow 0$ \Rightarrow Contribution of soft constituent quarks is dominant

Perturbative expansion of the matrix element:

$$\langle \pi \pi | \hat{H} | B \rangle = A^{(0)} + \alpha_s A^{(1)} + \dots$$

$$= T \otimes \phi$$

$$= T^{(0)} \otimes \phi^{(0)} +$$

$$\alpha_s [T^{(1)} \otimes \phi^{(0)} + T^{(0)} \otimes \phi^{(1)}] + \dots$$

Perturbative expansion of the matrix element:

$$\langle \pi \pi | \hat{H} | B \rangle = A^{(0)} + \alpha_s A^{(1)} + \dots$$

$$= T \otimes \phi$$

$$= T^{(0)} \otimes \phi^{(0)} +$$

$$\alpha_s [T^{(1)} \otimes \phi^{(0)} + T^{(0)} \otimes \phi^{(1)}] + \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• We want to calculate the perturbative expansion of $T = T^{(0)} + \alpha_s T^{(1)} + \dots$

Perturbative expansion of the matrix element:

$$\langle \pi \pi | \hat{H} | B \rangle = A^{(0)} + \alpha_s A^{(1)} + \dots$$

$$= T \otimes \phi$$

$$= T^{(0)} \otimes \phi^{(0)} +$$

$$\alpha_s [T^{(1)} \otimes \phi^{(0)} + T^{(0)} \otimes \phi^{(1)}] + \dots$$

- We want to calculate the perturbative expansion of $T = T^{(0)} + \alpha_s T^{(1)} + \dots$
- Extract T order by order:

$$\begin{array}{rcl} T^{(0)} \otimes \phi^{(0)} &=& {\cal A}^{(0)} \\ T^{(1)} \otimes \phi^{(0)} &=& {\cal A}^{(1)} - T^{(0)} \otimes \phi^{(1)} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

÷

Perturbative expansion of the matrix element:

$$\langle \pi \pi | \hat{H} | B \rangle = A^{(0)} + \alpha_s A^{(1)} + \dots$$

$$= T \otimes \phi$$

$$= T^{(0)} \otimes \phi^{(0)} +$$

$$\alpha_s [T^{(1)} \otimes \phi^{(0)} + T^{(0)} \otimes \phi^{(1)}] + \dots$$

- We want to calculate the perturbative expansion of $T = T^{(0)} + \alpha_s T^{(1)} + \dots$
- Extract T order by order:

$$\begin{array}{rcl} T^{(0)} \otimes \phi^{(0)} &=& {\cal A}^{(0)} \\ T^{(1)} \otimes \phi^{(0)} &=& {\cal A}^{(1)} - T^{(0)} \otimes \phi^{(1)} \end{array}$$

IR and endpoint singularities of A⁽¹⁾ and φ⁽¹⁾ cancel each other

▲□ → ▲圖 → ▲ ■ → ▲ ■ → ④ ● ◆

 \Rightarrow *T* stays finite

Feynman diagrams for $B \rightarrow \pi \pi$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Feynman diagrams for $B \rightarrow \pi \pi$

► In the case $\bar{B}^0 \rightarrow \pi^0 \pi^0$ LO is color suppressed and NLO is expected to be more important

・ロト・(部・・目下・(日下))

NLO

Form factor contributions:

NLO

Form factor contributions:

Lead to contributions $\sim \mathcal{F}^{B \to \pi}(0) \int_0^1 du \, T'(u) \phi_{\pi}(u)$

Hard spectator interactions:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Lead to contributions $\sim \int_0^1 d\xi dv du \phi_B(\xi) \phi_\pi(u) \phi_\pi(v) T''(\xi, u, v)$

 Because of the soft spectator quark the A_{QCD} scale appears explicitly

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Because of the soft spectator quark the AQCD scale appears explicitly

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• Large logarithms $\ln \frac{\Lambda_{QCD}}{m_B}$ come into the game

- Because of the soft spectator quark the AQCD scale appears explicitly
- Large logarithms $\ln \frac{\Lambda_{QCD}}{m_B}$ come into the game
- Enhancement of QCD-corrections: α_s(√Λ_{QCD}m_B) instead of α_s(m_B)

- Because of the soft spectator quark the AQCD scale appears explicitly
- Large logarithms $\ln \frac{\Lambda_{QCD}}{m_B}$ come into the game
- Enhancement of QCD-corrections: α_s(√Λ_{QCD}m_B) instead of α_s(m_B)

 \Rightarrow At NNLO hard spectator interactions are expected to be important

Hard spectator interactions in NNLO

Altogether about fifty diagrams

Hard spectator interactions in NNLO

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Altogether about fifty diagrams
- Only one loop calculations despite O(a²_s)

Hard spectator interactions in NNLO

- Altogether about fifty diagrams
- Only one loop calculations despite O(a²_s)
- Feynman integrals contain up to five propagators and three linearly independent momenta

 \Rightarrow Expansion in Λ_{QCD}/m_B on the level of integrands rather than of Feynman integrals

Some numbers Beneke, Jäger hep-ph/0512351 and Beneke, Neubert hep-ph/0308039

CP averaged branching ratios

Mode	NLO	NNLO	Experiment
$B^- ightarrow \pi^- \pi^0$	5.1	5.5 ± 1.0	5.5 ± 0.6
$ar{B}^0 o \pi^+\pi^-$	5.2	$\textbf{5.0} \pm \textbf{1.3}$	5.0 ± 0.4
$ar{B}^0 o \pi^0 \pi^0$	0.7	$0.73\substack{+0.8 \\ -0.6}$	1.45 ± 0.3

Some numbers Beneke, Jäger hep-ph/0512351 and Beneke, Neubert hep-ph/0308039

CP averaged branching ratios

Mode	NLO	NNLO	Experiment
$B^- ightarrow \pi^- \pi^0$	5.1	5.5 ± 1.0	5.5 ± 0.6
$ar{B}^0 o \pi^+\pi^-$	5.2	5.0 ± 1.3	5.0 ± 0.4
$ar{B}^0 o \pi^0 \pi^0$	0.7	$0.73\substack{+0.8 \\ -0.6}$	1.45 ± 0.3

► For $\bar{B}^0 \to \pi^0 \pi^0$ large theoretical errors for the other modes good agreement with the experiment

(日) (日) (日) (日) (日) (日) (日)

CP averaged branching ratios

Mode	NLO	NNLO	Experiment
$B^- ightarrow \pi^- \pi^0$	5.1	5.5 ± 1.0	5.5 ± 0.6
$ar{B}^0 o \pi^+\pi^-$	5.2	5.0 ± 1.3	5.0 ± 0.4
$ar{B}^0 o \pi^0 \pi^0$	0.7	$0.73\substack{+0.8 \\ -0.6}$	1.45 ± 0.3

► For $\bar{B}^0 \to \pi^0 \pi^0$ large theoretical errors for the other modes good agreement with the experiment

(日) (日) (日) (日) (日) (日) (日)

 NNLO taken from Beneke and Jäger. My work is still in progress

Summary

- B-decays play an important role for determining the CKM angles
- In leading power QCD-effects in *B*-decays can be handled in the framework of QCD-factorization

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 Hard spectator interactions are important because they introduce large logaritms ln AQCD mB