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Overview

1. Motivation
2. ILC Project  
3. Detector concepts
4. Selected physics topics

– Higgs
– SUSY (only touching)
– Large extra dimensions
– Precision Measurements

• Strong EW Symmetry Breaking
• New Gauge Bosons (Z’)

5. Summary  (LHC/ILC)
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Success of the Standard Model 

• Standard Model
is extremely successful

• Experimental discovery of
all of its matter constituents
and force carriers

• Simple common approach
to describe all (relevant)
forces: gauge principle

• Self-consistent at the level
of quantum corrections
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However  ......

1st “but”:

The SM’s suggestion how to break electro-weak symmetry is not verified

Higgs mechanism (i.e. the SM approach) is a viable solution and evidence
is compelling:

something in the loops mimics a light Higgs
or it is a light Higgs…

Experimental challenge #1:

Find this Higgs (or its relatives)
or exclude it!
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Open questions

2nd ‘but’:

Even if we find a light Higgs:
why is it so light?

If there are no new phenomena which protect radiative corrections to
the Higgs mass, it will receive un-naturally large (quadratic) corrections:

‘fine tuning’

Nevertheless, there are very good ideas
how to protect the Higgs mass

SuperSymmetry, Extra Dimensions, new forces, or ??

Experimental challenge #2:

Find out what protects the 
Higgs mass at the TeV scale
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Open questions

3rd ‘but’:

Our beloved SM contains only a tiny fraction of what’s in our universe today!

Experimental challenge #3:

What is the microscopic nature
of dark matter (and dark energy?)

The Universe:

5%   SM matter

25% dark matter

70% dark energy
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Open questions

4th ‘but’:

We would probably not be happy with the answers to ‘but’s 1-3 unless 
they tell us something about physics at even higher energy scales!

a) unification of forces ?
b) connection between families

(flavour physics, hierarchy problem)

Experimental challenge #4:

If Nature is kind to give a line of sight
to high-scale physics use a
precision telescope to look at it

SUSY ? New forces ?
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Terascale Physics

Why is the TeV scale interesting?

1. SM without Higgs violates unitarity (in WLWL WLWL) at 1.3 TeV!
(something must happen!)

2. Evidence for light Higgs

3. 2 * Mtop = 350 GeV

4. Dark Matter consistent with                                     
(sub) TeV-scale WIMP (e.g. SUSY-LSP)

5. Diffuse x-ray spectra (from EGRET)                                        
consistent with 50-100 GeV WIMP

W. de Boer et al, hep-ph/0408166

red: excess γ’s from 
WIMP χ0

1 annihilation
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Why an e+e- Collider ? 

All of this so far could have been a speech to build the LHC !

Why an electron positron collider then?

p p e+ e-

Easier to reach high energies

p = composite particle:
unknown √s of IS partons,
no polarization of IS partons,
parasitic collisions

p = strongly interacting:
huge SM backgrounds,
highly selective trigger needed,
radiation hard detectors needed

Difficult to reach high energies                      
(synchrotron radiation)

e = pointlike particle:
known and tunable √s of IS particles,
polarization of IS particles possible,
kinematic contraints can be used

e = electroweakly interacting
low SM backgrounds,
no trigger needed,
detector design driven by precision
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Why an e+e- Collider ?

Electron positron colliders allow for

1. Discovery of the unexpected

2. Precision measurements of new + ‘old’ physics

( )new SMe e X Y+ − → +

telescopic

e e SM+ − →
Prediction of top mass
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Why an e+e- Collider ?

Electron positron colliders allow for

1. Discovery of the unexpected

2. Precision measurements of new + ‘old’ physics

( )new SMe e X Y+ − → +

telescopic

e e SM+ − →

Higher precision can give discoveries:
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Size and energy determined by
• bending magnet strength

• accelerating gradient 

B

Synchrotron Radiation from
an electron in a magnetic field:

Energy loss per turn of a machine 
with an average bending radius ρ :

∆Ε ∝ 1/ρ (Ε/m)4

Energy loss must be 
replaced by the RF system

(∆E = 8.85x10-5 E4/ρ MeV per turn
for electrons, E in GeV, ρ in km)

Why a LINEAR Collider ?

Storage rings:
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  LEP-II Super-LEP Hyper-
LEP 

Ecm GeV 200 500 2000 

L km 27   

∆E GeV 1.5   
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200

e+e- storage rings beyond LEP-II  ?? 
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200
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Linear Collider

e+ e-

10-20 km

long linac constructed of many RF accelerating 
structures

typical gradients range from 25−60 MV/m

single shot

One working machine                                           
SLC at SLAC 
← proof of principle
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The International Linear Collider

Strong consensus in the HEP community that the next machine after the 
LHC should be a linear e+e- collider in the energy range 500-1000 GeV.

The International Linear Collider (ILC)  planned for 2015, overlaps with LHC.

Baseline √s = 200-500 GeV, 
integrated Luminosity 500 fb-1 in 4 years
electron polarisation ~ 80% 

Upgrade     Anticipate √s → 1 TeV, ∫L = 1 ab-1 in 3 years

Options positron polarisation ~ 50%
high L at Z and at WW threshold (“GigaZ”)
e-e-, γγ and γe collisions

Choice among options to be guided by physics needs.
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ILC Technology Decision

Two competing technologies: 
normal conducting vs superconducting accelerating cavities

International Technology Review Panel recommended in August 2004
COLD superconducting technology (à la TESLA)

3 3  km

Niobium 
resonator
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Beam structure

bunch train

193 ns bunch-to-bunch
approx. 1ms bunch train

193 ns bunch-to-bunch
approx. 1ms bunch train

Target Luminosity: few 1034 cm-2s-1

σ× L = Event rate

L ∝ N1· N2 / A
* *
x yσ σ
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Beamstrahlung

This is not LEP (nor SLC)!

- Beamstrahlung

hard γ’s radiated by 
intense electric field
= Beamstrahlung

RMS Energy Loss:

Minimize while keeping            (luminosity!) constant by
chosing flat beams

* *
x yσ σ

2

* *
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Bunch crossings

Simulation  of two LC bunches (NLC) as they meet each other

Andrei Sergey, SLAC
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Background from Beamstrahlung
Beamstrahlung creates:

Photons and most of pairs vanish in beampipe but
need to shield detector from backscattered secondaries!

Tungsten Mask

Instrumentation

6 x 1010 photons/BX (1.3-1.5 photon/electron)
140000 e+e- pairs
secondary particles from γγ hadrons



A. Frey, MPI 1st IMPRS Block Course 19/10/2005 21

Background from Beamstrahlung

Beamstrahlung reduces the collision energy on average by 1.5% at 500 GeV
90% of the events have >95% of nominal collision energy

- Effect needs to be taken into account in physics studies
- Spectrum needs to be monitored countinously during data taking

use acollinearity of Bhabha-events, µ-pairs
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Detectors for the ILC

High Luminosity and clean environment call for a ultra-high precision detector!
Important sub-detectors are challenging (and different from LHC det’s)

106 events
in 1 ab-1

= o(0/00)
statistical
precision

Challenges:
‘Particle flow’ paradigm
Excellent momentum resolution
Precision vertexing
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Detector Layout

Tracker

Electromagn.Calo

Vertex detector

Hadronic Calo

Coil and
Muon decetor
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Detector concepts

3 global concepts are emerging

Main design issues
- Si or gaseous tracking ?
- Si/W ECAL (1x1cm) at small-medium radius or

coarser Sc/W ECAL at larger radius ?

Particle separation at Calo surface:

B x L2/ RMoliere

Those are open concepts not collaborations!
Many sub-detector R&D items in common

SiD LDC GLD
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Vertex Detector

High resolution pixel detector, 5 layers, innermost layer at r=1.5cm

Driving physics:

- Flavour tag (b/c) for Higgs BR’s 
- τ lifetime tag
- improve momentum resolution+

pattern recognition for main tracker

R&D ongoing in various directions:

- CCDs
- CMOS pixels
- DEPFET
- SoI Pixels

Critical issues:

- fast (column parallel) readout
- beamstrahlung pairs

(high B-Field (4T) helps)
- ultra-thin detectors (0.1%X0/layer)
- power consumption/cooling (material)

pair background

ra
di
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t. 
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om
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cm
)

z distance from IP (cm)



A. Frey, MPI 1st IMPRS Block Course 19/10/2005 26

Main tracker

Gaseous tracker (TPC, Jet chamber) or Silicon tracker ??

Driving physics:

1. Excellent momentum resolution, e.g.
for Z µµ (Higgs recoil mass)

momentum resolution: 
∆(1/p)  = 7 x 10-5/GeV (1/10xLEP)

∆M(µµ) < 0.1 ΓZ
∆MH dominated by beamstrahlung

2. Robust and efficient charged track
reconstruction for particle-flow 
jet reconstruction

Z recoil mass

a la
LEP

a la
ILC
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    ,   νννν ZZeeWWee →→ −+−+

E%30E%60

LEP-like resolution LC goal

Excellent  resolution needed to
distinguish W and Z in their hadronic decay modes

equivalent to 
some 40% 
luminosity gain 

Di-Jet Mass Resolution
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Jet Energy Resolution ⇒ Particle Flow

Ideally would like to treat quarks as any fermion optimize jet energy res.

Method: particle flow paradigm
= most exclusive reconstruction of                      

charged and neutral particles in a jet

Use tracking detectors to measure energy of charged particles 
(65% of the typical jet energy)
EM calorimeter for photons (25%)
EM and Had calorimeter for neutral hadrons (10%)

2
confusion

2
neut.had.

2
photons

2
charged

2
jet

had. neut.photonschargedjet

σσσσσ +++=

++=

EEEE

EEEE

( ) ( ) ( ) ( )
!2 22 2

Ejet jet confusion jet0.14 E GeV 0.3 E GeVσ ≈ ⋅ + σ ≈ ⋅

largest contribution!
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Particle Flow

To reduce confusion in the calorimeters:
– Have large B field and large calorimeter inner radius

• to separate the particles
– Use materials with small Moliere radius

• to reduce shower overlap
– Finely segment calorimeters (in 3D)

• to allow separation of neighbouring showers
– Place calorimeters inside coil, no cracks
– Develop smart algorithms

Iron TungstenIron: X0/λI = 1.8cm/17cm ~ 0.1

Tungsten: X0/λI = 0.35cm/9.6cm ~ 0.04
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Interim Summary

• Standard Model is successful enough to show us that we are not
on a completely wrong path.

• Very likely for new phenomena to appear at the TeV energy scale.
Those can be studied at high-energy colliders.

• The TeV linear collider (ILC) will study these new phenomena
in more depth than the LHC. 

• Experimentation at a Linear Collider is more demanding than at LEP/SLC.

• A high-resolution detector with small systematics is needed to
match the statistical precision offered by the high luminosity.

Timeline
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Theory:
Upper bound: perturbativity (λ<1)
Lower bound: vacuum stability
Models: minimal SUSY: m<135 GeV

GUT’s            : m<180 GeV

The Physics Case - Higgs

“Mexican hat-Potential”

most simple case: Φ =complex doublet
of weak isospin (=SM)

but this is a pure guess
many more possibilities, e.g.:
2 doublets (minimal SUSY), triplets,…

Experiment:
Precision measurements
(LEP, SLC, TeVatron)

m<250 GeV (95% CL) within SM

The Higgs boson 
is probably 

“light”!

The Higgs boson 
is probably 

“light”!
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Higgs discovery at LHC

First measurements of Higgs properties possible:
• Mass: 0.1 – 0.4%
• Production rates: 10-20%
• Ratios of couplings: W/Z, W/t, W/t: 10-20%
• model-independent measurements of absolute couplings impossible

SM-like Higgs discovery 
with 30 fb-1 in one experiment
guaranteed

Light Higgs most challening
Fusion channels help a lot

Unusual decay modes 
(invisible, purely hadronic)
more complicated
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Higgs - Task of a Linear Collider

After the discovery of a Higgs boson, the key task of ILC is to 
establish the Higgs mechanism in all elements
as being responsible for EW symmetry breaking

Precision Measurements must comprise:

• Mass

• Total Width
• Quantum numbers JPC (Spin 0, CP-even?)

• Higgs-Fermion couplings (~ mass ?)

• Higgs-Gauge-Boson couplings (W/Z masses)
• Higgs self coupling (spontaneous symmetry breaking)

Measurements should be precise enough to distinguish between
different models (e.g. SM/MSSM, effects from extra-dimensions, …) 

Aim at model-independence!
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Higgs Production 

Dominant production processes at LC:

Higgs-strahlung WW fusion

~ 1/sσ ∝ ~ ln sσ ∝
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Higgs-strahlung

ee -> HZ   
Z -> l l 
H -> qq
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Model-independent observation

Anchor of LC Higgs physics:
• select di-lepton events

consistent with Z ee/µµ

• calculate recoil mass:

model independent,
decay-mode independent
measurement!

2 2
H initialm (p p )= −ll
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Model-independent observation

efficiency is ~independent of 
decay mode:

small differences can be corrected
with MC

works over the whole range
of possible Higgs masses:

precision on σ(HZ): 
1-3% for mH<200 GeV
3-20% for mH<500 GeV
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Higgs Quantum Numbers

Is it a Higgs boson ? 

Rise of cross section near threshold is sensitive to Higgs Spin

mH=120 GeV
20 fb-1/point

for J=0: rise ~ β
for J>0: rise ~ βk ,k>1
(some cases for J=2 are also ~β
but can be distinguished from J=0
through angular distributions)

also: 

observation of H γγ or γγ H
rule out J=1 and require C = +
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Measurement of the Higgs Mass

Model-independent HZ analysis only uses a fraction of the events (Z ll)

For a precise mass determination further statistics can be gained if 
hadronic Z-decays are used.

For mass measurement, explicit Higgs final states (e.g. H bb) may be used

Highest sensitivity to Higgs mass comes from purely hadronic events

Kinematic fits improve the mass resolution
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Higgs Mass

0

120HM GeV

H Z bbqq

=

→ 0

120HM GeV

H Z bbl l+ −

=

→

0

150HM GeV

H Z W W qq+ −

=

→

0

150HM GeV

H Z W W l l+ − + −

=

→

sub
-pe

rmille

pre
cisi

on

500 fb-1 @ √s = 350 GeV
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Higgs Branching Ratios

Higgs Branching ratios best to study Higgs Yukawa couplings for a light H

Crucial test: Γ(H ff) ~ mf  ?

At ILC measurement of >absolute< BR’s is possible, because of decay-mode
independent gHZZ measurement:

[ ]meas

meas

(HZ) BR(H X)
BR(H X)

(HZ)

σ →
→ =

σ
x
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Higgs Branching Ratios
Most challenging: disentangle the hadronic Higgs decays
H bb H cc H gg

6.7 %H gg

3.0 %H cc

68.2%H bb for 
mH=120 GeV

Need sophisticated flavour tagging: 
Vertex reconstruction using ZVTOP algorithm (SLD)

Tracks interpreted
as 3D probability tubes

Vertices = overlapping
tubes

After vertex reconstruction, use ANN’s with vertex+track information
to obtain b- and c-likeness for each jet
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Higgs Branching Ratios

∆BR/BR

bb 2.4%
cc 8.3%
gg 5.5%
tt 6.0%
gg 23.0%
WW 5.4%

For 500 fb-1
MH = 120 GeV
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Higgs Self Coupling

Higgs self-coupling (‘the holy grail’):

essential test of the mechanism of 
spontaneous symmetry breaking

V =λv2H2 + λvH3 + 1/4λH4

SM: gHHH = 6λv, fixed by MH 
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Measurement of Higgs self coupling

Tiny cross section
Complicated multi-jet final state

detector design: energy flow

Need highest luminosity
Precision for 1 ab-1 :

%20≅∆
λ

λ

Difficult backgrounds

60%/√E 30%/√E
jet mass
resolution:
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Higgs - Global Fits                                                    
Interpretation of branching ratio 
and                                                      
cross section measurements
in global fits (HFITTER)

%-level accuracy – sensitivity beyond SM
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SUSY Higgs Bosons

In MSSM two complex Higgs doublet fields needed

(cancellation of triangle anomalies)

Minimal possibility: two doublets (weak isospin ±1)

5 physical Higgs bosons: h,H neutral, CP-even

A neutral, CP-odd

H± charged

Masses at tree-level predicted as function
of mA and tanβ
but large rad. corrections (top, stop)

mh < 135 GeV
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SUSY Higgs at LHC

To prove the structure of the Higgs sector, the heavier Higgs bosons
have to be observed either directly or through loop-effects.
Direct observation difficult in part of parameter space at LHC

What’s possible at a
Linear Collider?
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SUSY Higgs Bosons

Very clear signal in HA bbbb
100 – 1000 MeV mass precision due to kinematic fit
drawback: pair production mass reach ~ √s / 2

Example for mH=250 GeV / mA=300 GeV at √s = 800 GeV:

√s =800 GeV
mA=300 GeV
mH=250 GeV

Reach extended into 
the LHC wedge region
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Higgs Summary

• Higgs mechanism (still) the only completely calculable model
of electro-weak symmetry breaking

• Intriguing hints for light Higgs boson from experiment + theory

• LHC will find a SM-like Higgs if it’s there

• ILC will be able to pin down the properties of the light Higgs
at the quantum level and test details of the model

• Heavy SUSY Higgses can be seen if m<√see/2 or m<√sγγ
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SUSY is one of the most attractive extensions to the SM!

Simple Idea:

Symmetry between
Bosons and Fermions

each SM particle has a
SUSY partner with same
Quantum numbers and
Spin differing by ½.

But where are the SUSY
Partners? Must be heavy

SUSY must be broken!

Why is it so attractive, then?

Supersymmetry
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1. It solves the Hierarchy problem:
The divergency in the Higgs mass corrections is cancelled exactly
for unbroken SUSY. 

If it is not broken too heavily (i.e. if the SUSY partners are at
<~ 1 TeV), there is no fine tuning necessary.

Supersymmetry

2. It shows a path to Grand unification:
Minimal SUSY prediction:

(requires light (< TeV) partners
of EW gauge bosons)
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3. Cold Dark Matter:

The lightest SUSY partner particle might well be stable and is
an excellent candidate for the observed cold dark matter

4. Link to Gravity:

SUSY offers the theoretical link to incorporate gravity. Most string
models are supersymmetric.

5. Light Higgs Boson:

SUSY predicts a light (< 135 GeV) Higgs boson as favoured by
electro-weak precision data from LEP and Tevatron.

Supersymmetry
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The minimal supersymmetric model (MSSM) has 105 new parameters

Most of them arise from our ignorance about the way SUSY is broken

Explicit models of SUSY breaking typically only have few parameters
e.g., mSUGRA: tanβ, m1/2, m0, A0, sgn(µ)

Sparticle Spectrum
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Typical SUSY spectrum

well measurable at LHC

precise spectroscopy at LC
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Supersymmetry - Task of LC

different SUSY breaking mechanisms yield different spectra:
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Supersymmetry - Task of the LC

After discovery, the task is to reveal the underlying theory of SUSY
breaking. The LC can do this by precision measurements of the
masses and properties of the accessible part of the spectrum

• is it really SUSY?

• how is it realized?
(particle content) MSSM, NMSSM, …

• how is it broken?
measure as many of the >100 LE parameters as possible
measure them as precisely as possible -> extrapolation to high scale
(bottom-up approach)

Note: successfully fitting the parameters of a constrained model
to the observations  is a necessary but not a sufficient test of
the model. 
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SUSY Production at ILC

This will be fun…

cross sections in the
10 – 1000 fb range

o(103 – 105) events

to disentangle this ‘chaos’
the various LC options,
in particular

- tunable √s
- tunable beam polarisation

are vital!

500200 1000 3000
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Example: Sleptons

Pair-production

Examples:

Simple two-body kinematics and 
beam-constraint allow for mass 
measurement of both 
slepton and lightest neutralino

L/R
+%l

L/R
−%l

/Zγ

E+E-
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SUSY - Dark Matter

If SUSY LSP responsible for Cold Dark Matter, need accelerators
to show that its properties are consistent with CMB data

- Future precision on Ωh2 ~ 2% (Planck) – match this precision!

- WMAP points to certain difficult regions in parameter space:

small 0
1

M M M
χ

∆ = −%l

e.g. smuon pair production at 1TeV
only two very soft muons! 
need to fight backgrounds
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Completely alternative approach to solve hierarchy problem:
“There is no hierarchy problem”
Suppose the SM fields live in “normal” 3+1 dim. space
Gravity lives in 4 + δ dimensions

δ extra dimensions are curled to a small volume (radius R)

Extra Dimensions



A. Frey, MPI 1st IMPRS Block Course 19/10/2005 62

1
( ) SG

V r
rδ +

=

For r  < R, gravity follows Newton's law in 4 + δ dimensions:

For r  > R, gravity follows effectively Newton's law in
4 dimensions, since the “distance” in the extra dimensions
does not rise anymore:

w( h) itS N S
N

G G G
V r G

R r r Rδ δ= = =

The Planck mass                                    only effectively appears
so high at large distances. The true scale of gravity is

2 /Planck NM c G= h

2 / /S S NM c G cR Gδ= =h h
If e. g. R ~ O(100 µm) and δ = 2, one obtains

⇒ Gravity might become visible at TeV-scale colliders!

(1TeV)SM o=

Extra Dimensions
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String theory motivates brane models in which our world is confined
to a membrane embedded in a higher dimensional space

Extra dimensions provide an explanation for the hierarchy problem

e.g. large extra dimensions:

Emission of gravitons
into extra dimensions

Experimental signature

single photons

Extra Dimensions
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measurement of cross 
sections at different energies 
allows to determine number 
and scale of extra dimensions

(500 fb-1 at 500 GeV,

1000 fb-1 at 800 GeV)

cross section for anomalous single
photon production

Energy

δ = # of extra dimensions

e+e- -> γG

Extra Dimensions
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5th dimension φ

SM

brane

gravity

at ‘n
orm

al’

(SM-lik
e)

stre
ngth

gravity appears weak on SM brane (in our
world) due to exponentially ‘warped’ metric
in 5th dimension

might observe spectacular 
KK-excitations of the
graviton

+ graviscalar excitations
(“Radions”) which mix
with the Higgs and
modify its couplings +
mass

Warped Extra Dimensions
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Discovery through precision

Precision measurements of SM processes are a              
telescope to higher scale physics

Top quark
Z‘ and similar vector resonances
Alternative EWSB
etc.

Example Higgs
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divergent WL WL WL WL amplitude in SM at

SM becomes inconsistent unless a new strong QCD-like interaction sets on

no calculable theory until today in agreement with precision data

Experimental consequences: deviations in      

triple gauge couplings                               quartic gauge couplings:

π⎛ ⎞
Λ = ≈⎜ ⎟⎜ ⎟

⎝ ⎠

2 24 2
(1.2 )

F

o TeV
G

LC (800 GeV): sensitivity to energy scale Λ:
triple gauge couplings: ~ 8 TeV
quartic gauge couplings: ~ 3 TeV         complete threshold region covered

If no Higgs boson(s) found….                           
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New Gauge Bosons (Z’)

Heavy Z’ vector boson motivated by TeV scale remnants of 
Grand Unified Theories, string theories etc.
Examples: Z’ in SO10, E6

LHC: M(Z’)  up to ~ 5 TeV

ILC: Unlikely to directly produce a Z’ (Tevatron limits approaching 1 TeV)
virtual extension up to 15 TeV measuring its interference with Z,γ exchange
(PETRA could measure Z properties without producing Z’s)

5σ 95%CL
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If Z’ mass is known (e.g. from LHC) ILC can measure the 
vector and axial-vector couplings an pin down the nature of the Z’

By measuring at two different √s, ILC can measure both mass and 
couplings

If  here, related to origin of neutrino 
masses

If here, related to origin of Higgs

If here, Z’ comes from an extra 
dimension of space

New Gauge Bosons (Z’)
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Whatever LHC will find,...

…ILC will have a lot to say!

‘What’ depends on LHC findings:

1. If there is a ‘light’ Higgs (consistent with prec.EW)
verify the Higgs mechanism is at work in all elements

2. If there is a ‘heavy’ Higgs (inconsistent with prec.EW)
verify the Higgs mechanism is at work in all elements
find out why prec. EW data are inconsistent

3. 1./2. + new states (SUSY, XD, little H, Z’, …)
precise spectroscopy of the new states

4. No Higgs, no new states (inconsistent with prec.EW)
find out why prec. EW data are inconsistent
look for threshold effects of strong EWSB
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Final remarks

We live in exciting times:

- Expect major discoveries at the TeV scale with LHC
and ILC

- High energy physics will not be finished with LHC+ILC
Active R&D for the multi-TeV regime is vital and necessary now
CLIC is a promising way to get there

- ILC technology at hands – if we all work (and talk) together 
this dream can turn into reality

- LHC startup soon – highest priority: let’s make this a success
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THE COMPACT LINEAR 
COLLIDER (CLIC) STUDY

Multi TeV e+e-

collider

up to 3 TeV


