

Physics with MAGIC

M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)

Gamma ray sources = Cosmic Ray Accelerators

SNR

Cosmic Accelerators

Cosmic Ray accelerator AGNs

Gamma-Ray Emission Processes

MAGIC Physics Objectives

AGNs

Cosmological

γ-Ray Horizon

Pulsars Origin of Cosmic Rays

GRBs

Cold Dark Matter

Quantum Gravity

Pulsars

7 γ -ray pulsars seen by EGRET (E $_{\gamma}$ < 10 GeV) Only upper limits from

present IACTs for pulsed emission (spectral cut-off)

Where do γ-rays come from? Outer gap or polar cap?
 30 – 100 GeV decisive energy range

Pulsars

Old pulsars have hard energy spectrum (gamma ray rich)

 Some of EGRET un-ID sources are believed to be old pulsars. Identification by MAGIC high statistics data

Gamma Ray visibility

msec pulsars are good candidates for VHE gamma sources

MAGIC Physics Objectives

AGNs

Cosmological

γ-Ray Horizon

Pulsars Origin of Cosmic Rays

SNRs

GRBs

Cold Dark Matter

Quantum Gravity

Active Galactic Nucleis

Core of Galaxy NGC 426I Hubble Space Telescope

•Central Black Hole 10⁸~10⁹ M_o

Sucking matters ~1M
 _O /year

•Relativist Jet is formed using the accretion energy $\gamma \sim 10 \sim 100$

Shockwave in the jet is formed

•Electrons and protons are accelerated by shock

M87

•Gamma ray emission through I.C. and pionization

Mrk501 by HEGRA

Emax(e) became higher

TeV Blazars

Most of sources are nearby Z<0.1

Catalog Name	Source	Classification	Redshift
TeV 0219+4248	3C66A	BL Lac (LBL)	0.444 ??
TeV 1104+3813	Mrk 421	BL Lac (HBL)	0.031
TeV 1429+4240	H1426 + 428	BL Lac (HBL)	0.129
TeV 1654+3946	Mrk 501	BL Lac (HBL)	0.033
TeV 2000+6509	1ES1959 + 650	BL Lac (HBL)	0.048
TeV 2159-3014	PKS2155-304	BL Lac (HBL)	0.116
TeV 2203+4217	BL Lac	BL Lac (LBL)	0.069 ??
TeV $2347 + 5142$	1ES2344 + 514	BL Lac (HBL)	0.044

Absorption of gamma rays in the universe Pair Creation; $\gamma + \gamma \rightarrow e^+ + e^-$

Gamma Ray Horizon

A lower energy thresholds allows a deeper look into the universe

Current IACTs can see only up to z~0.1

Evolution of EBL by T.M. Kneiske et al.

Gamma Ray Horizon and Cosmology

Gamma ray horizon gives us

Gamma ray path length
 IR, optical photon density

Path length $\leftarrow \rightarrow z$ (red shift)

$$\frac{d\ell}{dz} = c \cdot \frac{1/(1+z)}{H_0 \left[\Omega_M (1+z)^3 + \Omega_K (1+z)^2 + \Omega_\Lambda\right]^{1/2}}$$

O. Blanch, M. Martinez - ICRC 2003

MAGIC Physics Objectives

AGNs

Cosmological

γ-Ray Horizon

Pulsars Origin of Cosmic Rays

Cold Dark Matter

Gamma ray bursts

Hypernova!

Ultrarelativistic

iet

Internal shocks

Relativistic Bulk motion of Jet ~ γ~1000 GRB Blast shock wave

engine

Binary neutron stars

Two EGRET Bursts

6

0

2

Time (seconds)

 Considerable energy at 100 MeV-10 GeV

GRB observation by MAGIC

Uniformity

Pulse Duration

~10sec GRB trigger Satellite to MAGIC <20sec MAGIC slewing time

GRB observation by MAGIC

- A few GRBs/year will be detectable by MAGIC
- Typical gamma ray flux at 10-50GeV
 - Rate_{exp} = 100~1000Hz assuming E⁻² power law spectrum
- Test for Quantum Gravity
 - ~10sec time delay are expected at ~100GeV energy from cosmological GRBs
 - Cosmological distance!! High Energy!! High statistics!!
 - Energy dependence, Distance dependence (we need several samples at least)

E_{0G} ~10¹⁹GeV

$$\Delta t \simeq \xi \frac{E}{E_{QG}} \frac{L}{c}$$

MAGIC Physics objectives

AGNs

Cosmological

γ-Ray Horizon

Pulsars Origin of Cosmic Rays

Cold Dark Matter

Total Photon Spectrum from Neutralino annihilation (Bergstroem et al. 1998)

Best Candidate; LSP Neutralino R-Parity conservation

$$(100 GeV \le m_{\chi} \le 1 TeV)$$

Neutralino Annihilations → gamma rays

$$\begin{array}{l} \chi\chi \to \gamma\gamma \twoheadrightarrow \gamma \text{-line } E_{\gamma} = m_{\chi} \\ \chi\chi \to \gamma Z \Longrightarrow \gamma \text{-line } E_{\gamma} = m_{\chi} - m_{Z}^{-2}/4 m_{\chi} \\ \chi\chi \to \overline{q}q \Longrightarrow \gamma \text{ continuum} \end{array}$$

$$\Phi_{\gamma}(\Omega) = \frac{N_{\gamma} v \sigma}{4\pi \cdot M_{\chi}^2} \cdot \int \rho_{DM}^{2}(l) dl(\Omega)$$

Galactic Center distribution of DM Stoehr et al. 2003

Subhalo mass function

Galactic Center distribution of DM Stoehr et al. 2003

Nearby Dwarf Galaxies

Draco Dwarf Galaxy C.Tyler 2002

Isocurvature modes:

- **Decay:**
- **Annihilate:**
- **Direct Detection:**

CMB, Large-scale structure Ultra High Energy Cosmic Rays Galactic Center, Sun Bulk, Underground Se By Kolb, 2003

MAGIC Physics Objectives

AGNs

10*

Fluence, 50-300 keV (eras cm)

GRBs

Cosmological

γ-Ray Horizon

Quantum Gravity

Cold Dark Matter

Pulsars Origin of Cosmic Rays

SNRs

Gamma Ray Detectors Imaging Air Cherenkov Telescopes

G

Ground based gamma ray astronomy Big Four!!

Atmospheric Imaging Cherenkov Telescope

Cherenkov light from gamma ray showers

~100 photons/m² @1TeV gamma
→ Photon hungry experiment

Effective area ~ $10^5 m^2$

0.6° 189mm

MC Simulation of Shower

Hadron Rejection by Image ~99%

-15 -28

189mr

37 31

Alpha (Orientation angle) distribution

Hadron rejection by orientation α ~90%

Before Image & Orientation cut $N_s/N_B \sim 1/1000$ After Image & Orientation cut $N_s/N_B \sim 1/1$

IACT vs. Satellite Complimentary

	Satellite	Ground
	GLAST	MAGIC
Gamma-ray detection	Direct (pair creation)	Indirect (atmospheric Cherenkov)
Energy	Up to 100GeV	From 40GeV
Positive aspects	High S/N Large FOV	Large area Good $\Delta \theta$
Negative aspects	Small area High cost	Large Background Small FOV Only moonless night

Detector Sensitivities For TeV Blazars by P.Copi

• EXIST: Synchrotron Emission from "Blue" TeV Blazars

Array System or Single Big Telescope

HESS, VERITAS, CANGAROO Concepts High Precision measurement

MAGIC Concepts Low Threshold Energy Eth > 50GeV → 30GeV

Extension of HESS, MAGIC No rule in competition

HESS-II 28m diameter telescope Lower threshold energy

MAGIC-II 2x17m, High Q.E. detectors Lower threshold energy High Precision

Stereo system

Cherenkov Images

Multiple Telescopes:

improve angular resolution reduce background

But n-times expensive

MAGIC Physics Objectives

AGNs

10*

Fluence, 50-300 keV (eras cm)

GRBs

Cosmological

γ-Ray Horizon

Quantum Gravity

Cold Dark Matter

Pulsars Origin of Cosmic Rays

SNRs

Why do we want to move lower energy range?

Cosmological Gamma ray absorption Pair Creation; $\gamma + \gamma \rightarrow e^+ + e^-$

Key technological elements for MAGIC 17 m diameter parabolic reflecting surface (240 m²) Light weight Carbon fiber high reflective diamond milled aluminum structure for mirrors Active mirror control fast repositioning (PSF: 90% of light in 0.1° inner pixel) 3.5° FOV camera 576 high QE PMTs $(QE_{max} = 30\%)$

Analog signal transport via optical fibers

3-level trigger system & 300 MHz FADC system

Signal to Noise ratio

Data quality depends on two conditions

- Background night sky background
 - ~2000 photons / nsec sr m² in 300nm-600nm
- Signal to Noise; $S/\sqrt{B} \propto A^{1/2} \varepsilon^{1/2} \Delta T^{-1/2} \Delta \Omega^{-1/2}$
 - $A Mirror Area 17m \Phi$
 - ε photon collection efficiency high Q.E. devices
 - ΔT Integration time ultra FAST readout system
 - $\Delta \Omega$ solid angle finer pixelization of 0.1 degrees
- Image quality ; $S = \rho A \varepsilon \ge 50 \sim 100$

In order to get a reasonable quality for the image

In reality, the threshold energy of cherenkov telescope was so far proportional to mirror area.

The MAGIC Telescope

(Major Atmospheric Gamma Imaging Cherenkov Telescope)

Many new technologies

- Lower threshold energy (AGN, GRB, distant sources)
 - $A \rightarrow$ Large mirror area 17m Φ
 - $\varepsilon \rightarrow$ Improved Q.E. Hemispherical PMTs
 - $\Delta T \rightarrow$ Palabolic mirror minimize time dispersion of photons
 - $\Delta T \rightarrow$ Analog signal transmission by optical fibers
 - $\varDelta T \rightarrow 300 \text{ MHz FADC} \rightarrow \text{upgrade to 2GHz FADC}$
 - $\Delta \Omega \rightarrow 0.1$ degree fine pixel camera
 - 3 Level triggers
- Fast rotation(<20sec); for GRB observation</p>
 - Low weight Carbon Fiber Space Frame construction, 5tons
 - Light weight All Alminum Mirrors
 - Active mirror control compensate small frame distortion (~0.1 deg)

GRB observation by MAGIC

Uniformity

Pulse Duration

10~20sec GRB trigger Satellite to MAGIC <30sec MAGIC slewing time

GRB050713A \rightarrow 40sec after the burst GRB050904 \rightarrow 80 sec after the burst

The first telescope is now in regular scientific operation

We have understood well our telescope M.C. explains real data well The trigger threshold energy is now ~50GeV Tight cut >100GeV -> sure results on several sources

GRB fast follow-up observation function was partially implemented (~50% speed) It will be upgraded to full performance (full speed) GRB050713A was successfully observed 40 seconds after the beginning of burst

Highlights of MAGIC observations this one year

Crab Nebular

SZA & LZA

Galactic Center

HESS J1813

Alpha Plot

HESS J1834

53379.23 - 53385.28

MJD:

1ES1959+650

Entries 400 Counts Results of polynomial fit to OFF (order 2) 160 (0.00+ inghet + 80.00 [1 Indiastrondia 1805 North 24 Prop. 530 140 OFF events (\$15, 045.5) 18.8 T manufa (mana) - 317.5 - 18. in Factor Is Non-North - 5.60 120 suits for laiphal< 6.00 [°]: 100 80 ALL THE MARCHINE 60 ani 20 20 30 40 50 80 90 alpha! [*]

New source 1ES1218 (z=0.18)

Mrk421 Campaign with HESS Mrk501 IAU Circular #8562

Crab Nebula

Galactic Center

EGRET All-Sky Gamma-Ray Survey Above 100 MeV

HESS J1813-178 Dark Particle Accelerator -- SNR

HESS J1834

Mrk421 (z=0.03) AGN (Blazar)

2.5

Mrk 421, Nov 2004 Jan 2005, Light Curve, Integral flux E > 300 GeV Mrk 421, April 2005, Light Curve, Integral flux E > 300 GeV Mrk 421, 05 Apr 2005, Integral flux E > 300 GeV s-] F(E>300GeV)[10⁻¹⁰cm⁻² 1.8 1.6 April 2 0.8 0.6 0.4 0.2 53464 53465 53466 53467 53468 53469 53470 53471 53472 53473 53464.9 53464.95 53465 53465.05 53465.1 time [MJD]

1.5 decades in 25 min

1ES1959+650 (Z=0.047) AGN (Blazar)

NEWS ITEM: MISSILE. TEST ACCIDENTALLY DEST NEATING TENAL

) AND DO YOU REMEMBER HOW YO PUT A BALL THROUGH SOMEONES I

First detection by Utah 7 T.A. 5 sigma

Mrk501 Giant flare 2005 July 01, IAU Circular #8562

Intensity variation in very short time scale!!

~10 minutes

1ES1218+304 (z=0.182)

MAGIC [Meyer]: 2005 data: ~7 hrs, 6~7σ no spectrum yet.

GRB050713a

GRB050713a Observation 40s after GRB

Extension to MAGIC-II

What is the next step

Now the MAGIC is in good shape

What is the next step

- Lower the energy threshold further
- Improve the sensitivity especially below 100GeV

Our solution – MAGIC-II

Second telescope, completion in 2007

 Stereo → high purity gamma samples → better physics

 High Q.E. photodetectors, HPD ~50%Q.E.

 Increase photon collection efficiency

 Ultra-fast FADCs 2.5 Gsamples/sec

 Reduce the effect of the night sky background
 Increase hadron rejection power with time profile

MAGIC-II (2 x 17m)

Stereo reconstruction

Image parameters $E\gamma$ peak = 40GeV

Stereo analysis at high energy in MAGIC II

$\delta \theta \sim 3 \sim 4$ arcmin around 1TeV

Sensitivity of MAGIC and MAGIC-II

MAGIC-II Camera current plan

919 fine pixels 54 large pixels

~3.9 degrees

Inner part HPDs ~2.0 degrees

R9792U-40 18mm GaAsP HPD by Hamamatsu

Compact HPD Operating Principle

PHD : MHP0015

First Test with Wavelength Shifter (WLS)

Equivalent to increase the mirror diameter from 17m to 24m!!

In comparison with the current PMTs With milky coating

ZA	0 °	25°	45°	60°
No WLS	1.90	1.92	2.00	2.14
With WLS	1.99	2.00	2.07	2.17
HPD Gains, Dynamic range and time response

Electron Bombardment Gain

APD Gain and Dark current

Dynamic range, 1pe ~5000 p.e.

Time response FWHM ~2.7nsec

GaAsP HPD life time

Total charge; 3.5 mC in Photocathode (ca. 100 C in APD output @ gain 30000])

Star Light and NSB Simulation

<star field (Crab nebula)>

# Objects	# stars <11mag	Brightest star[mag]
10	228	3.02

- 10 typical TeV sources
- Brighter than 11.0 mag stars
- Observation time <u>100 h/yr for each</u> (<u>Total: 1000h /yr</u>)
- Star rotation on Camera
- Moon observation is not taken into account

Domino Ring Sampler

Domino Ring Sampler developed by Stefan Ritt in PSI

2.5GSamples/sec with >10bit resolution

DAQ system for MAGIC is in development in U-Siena and U-Pisa

γ Shower Events (by MC simulation)

Advanced Camera for MAGIC-II

- HPDs are ready to use in MAGIC-II camera
 - Life time is estimated to be enough for 10 years
 - Q.E. ~50% at peak
 - Time response (1nsec rise, 3nsec FWHM)
 - Charge response and Dynamic range are satisfactory
- Signal quality
 - Photo collection efficiency is increased x2
 - 17m telescope → 24m telescope
 - Ultra fast FADCs suppress the night sky background x1/2
 - In total, quality factor increase by a factor of 2
- Aiming ~20GeV threshold energy with HPD camera
- SiPM development in the collaboration with MEPhI is also on-going in parallel for further improvement → aiming 60-70% Q.E.

- New generation telescopes, HESS, MAGIC, VERTITAS and CAGAROO-III are producing science.
- MAGIC (this one year)
 - 3 sources among 8 HESS source above G.C. were confirmed
 - 4 AGNs were observed
 - New TeV source 1ES1218 z=0.18 was discovered steep energy spectrum
 - 2 GRBs were observed in bursting phase under the analysis
- MAGIC will be upgraded to MAGIC-II in 2007
 - Stereo observation → sensitivity x2
 - HPD camera
 - 2.5 GSample/sec Ultra fast FADC
 - Expected threshold energy is ~20GeV
 - Simultaneous observation with GLAST
 - Good science, Cross calibration between 20-100GeV
- Significant contributions from Italian colleagues in MAGIC and MAGIC-II. Padova, Siena, Pisa and Udine